synchronized原理#
在java中,每一个对象都有且仅有一个同步锁,这也意味着,同步锁是依赖对象而存在的。
当调用对象的synchronized方法时,就获取了该对象的同步锁。如:synchronized(obj)
,就获取了obj这个对象的同步锁。
不同线程对同步锁的访问是互斥的。即某个时间点,对象的同步锁只能被一个线程获取到。
通过同步锁,我们可以在多线程中实现对"对象/方法"的互斥访问。
如:现在有两个线程a和b,它们都会访问对象obj的同步锁。
假设,在某一时刻,线程a获取到obj的同步锁
并在执行一些操作;而此时,线程b也企图获取obj的同步锁
,线程b会获取失败,它必须等待,直到线程a释放了obj的同步锁
之后,线程b才能获取到obj的同步锁
,从而才能运行。
synchronized基本规则#
现将synchronized的基本规则总结为下面3条,并通过实例对它们进行说明。
- 当一个线程访问
某对象的synchronized方法或synchronized代码块
时,其他线程对该对象
的该synchronized方法
或者synchronized代码块
的访问将被阻塞。
- 当一个线程访问
某对象的synchronized方法或synchronized代码块
时,其他线程仍然可以访问该对象的非同步代码块
。
- 当一个线程访问
某对象的synchronized方法或synchronized代码块
时,其他线程对该对象
的其他的synchronized方法
或者synchronized代码块
的访问将被阻塞。
第一条#
当一个线程访问某对象
的synchronized方法
或synchronized代码块
时,其他线程对该对象
的该synchronized方法
或者synchronized代码块
的访问将被阻塞。
下面是synchronized代码块
对应的演示程序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
public class MyRunable implements Runnable{
@Override
public void run() {
synchronized (this){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100);//休眠100ms
System.out.println(Thread.currentThread().getName() + " loop " + i);
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
public class Demo1 {
public static void main(String[] args) {
Runnable demo = new MyRunable();
Thread t1 = new Thread(demo, "t1"); // 新建“线程t1”, t1是基于demo这个Runnable对象
Thread t2 = new Thread(demo, "t2"); // 新建“线程t2”, t2是基于demo这个Runnable对象
t1.start(); // 启动“线程t1”
t2.start(); // 启动“线程t2”
}
}
|
结果:
1
2
3
4
5
6
7
8
9
10
|
t1 loop 0
t1 loop 1
t1 loop 2
t1 loop 3
t1 loop 4
t2 loop 0
t2 loop 1
t2 loop 2
t2 loop 3
t2 loop 4
|
说明:
run()
方法中存在synchronized(this)代码块
,而且t1和t2都是基于demo这个Runnable对象
创建的线程。
这就意味着,我们可以将synchronized(this)
中的this
看作是demo这个Runnable对象
;因此,线程t1和t2共享demo对象的同步锁
。
所以,当一个线程运行的时候,另外一个线程必须等待运行线程释放demo的同步锁
之后才能运行。
如果你确认,你搞清楚这个问题了。那我们将上面的代码进行修改,然后再运行看看结果怎么样,看看你是否会迷糊。修改后的源码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
class MyThread extends Thread {
public MyThread(String name) {
super(name);
}
@Override
public void run() {
synchronized(this) {
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName() + " loop " + i);
}
} catch (InterruptedException ie) {
}
}
}
}
public class Demo2 {
public static void main(String[] args) {
Thread t1 = new MyThread("t1"); // 新建“线程t1”
Thread t2 = new MyThread("t2"); // 新建“线程t2”
t1.start(); // 启动“线程t1”
t2.start(); // 启动“线程t2”
}
}
|
代码说明:
比较Demo1 和 Demo2,我们发现,Demo2中的MyThread类是直接继承于Thread,而且t1和t2都是MyThread子线程。
幸运的是,在Demo2的run()方法也调用了synchronized(this)
,正如Demo1的run()方法也调用了synchronized(this)
一样。
那么,Demo2的执行流程是不是和Demo1一样呢?
结果:
1
2
3
4
5
6
7
8
9
10
|
t1 loop 0
t2 loop 0
t1 loop 1
t2 loop 1
t1 loop 2
t2 loop 2
t1 loop 3
t2 loop 3
t1 loop 4
t2 loop 4
|
结果说明:
如果这个结果一点也不令你感到惊讶,那么我相信你对synchronized和this的认识已经比较深刻了。否则的话,请继续阅读这里的分析。
synchronized(this)
中的this是指当前的类对象
,即synchronized(this)
所在的类对应的当前对象。它的作用是获取当前对象的同步锁
。
对于Demo2中,synchronized(this)
中的this代表的是MyThread对象,而t1和t2是两个不同的MyThread对象,因此t1和t2在执行synchronized(this)
时,获取的是不同对象的同步锁。
对于Demo1对而言,synchronized(this)
中的this代表的是MyRunable对象;t1和t2共同一个MyRunable对象,因此,一个线程获取了对象的同步锁,会造成另外一个线程等待。
第二条#
当一个线程访问某对象的synchronized方法或synchronized代码块
时,其他线程仍可以访问该对象的非同步代码块
。
下面是synchronized代码块
对应的演示程序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
class Count {
// 含有synchronized同步块的方法
public void synMethod() {
synchronized(this) {
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName() + " synMethod loop " + i);
}
} catch (InterruptedException ie) {
}
}
}
// 非同步的方法
public void nonSynMethod() {
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i);
}
} catch (InterruptedException ie) {
}
}
}
public class Demo3 {
public static void main(String[] args) {
final Count count = new Count();
// 新建t1, t1会调用“count对象”的synMethod()方法
Thread t1 = new Thread(
new Runnable() {
@Override
public void run() {
count.synMethod();
}
}, "t1");
// 新建t2, t2会调用“count对象”的nonSynMethod()方法
Thread t2 = new Thread(
new Runnable() {
@Override
public void run() {
count.nonSynMethod();
}
}, "t2");
t1.start(); // 启动t1
t2.start(); // 启动t2
}
}
|
运行结果:
1
2
3
4
5
6
7
8
9
10
|
t1 synMethod loop 0
t2 nonSynMethod loop 0
t1 synMethod loop 1
t2 nonSynMethod loop 1
t1 synMethod loop 2
t2 nonSynMethod loop 2
t1 synMethod loop 3
t2 nonSynMethod loop 3
t1 synMethod loop 4
t2 nonSynMethod loop 4
|
结果说明:
主线程中新建了两个子线程t1和t2。t1会调用count对象的synMethod()方法,该方法内含有同步块;而t2则会调用count对象的nonSynMethod()方法,该方法不是同步方法。t1运行时,虽然调用synchronized(this)获取“count的同步锁”;但是并没有造成t2的阻塞,因为t2没有用到“count”同步锁。
第三条#
当一个线程访问某对象的synchronized方法或synchronized代码块
时,其他线程对该对象的其他synchronized方法或synchronized代码块
的访问将被阻塞。
我们将上面的例子中的nonSynMethod()方法体的也用synchronized(this)修饰。修改后的源码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
class Count {
// 含有synchronized同步块的方法
public void synMethod() {
synchronized(this) {
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName() + " synMethod loop " + i);
}
} catch (InterruptedException ie) {
}
}
}
// 也包含synchronized同步块的方法
public void nonSynMethod() {
synchronized(this) {
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i);
}
} catch (InterruptedException ie) {
}
}
}
}
public class Demo3 {
public static void main(String[] args) {
final Count count = new Count();
// 新建t1, t1会调用“count对象”的synMethod()方法
Thread t1 = new Thread(
new Runnable() {
@Override
public void run() {
count.synMethod();
}
}, "t1");
// 新建t2, t2会调用“count对象”的nonSynMethod()方法
Thread t2 = new Thread(
new Runnable() {
@Override
public void run() {
count.nonSynMethod();
}
}, "t2");
t1.start(); // 启动t1
t2.start(); // 启动t2
}
}
|
结果:
1
2
3
4
5
6
7
8
9
10
|
t1 synMethod loop 0
t1 synMethod loop 1
t1 synMethod loop 2
t1 synMethod loop 3
t1 synMethod loop 4
t2 nonSynMethod loop 0
t2 nonSynMethod loop 1
t2 nonSynMethod loop 2
t2 nonSynMethod loop 3
t2 nonSynMethod loop 4
|
结果说明:
主线程中新建了两个子线程t1和t2。t1和t2运行时都调用synchronized(this)
,这个this是Count对象(count),而t1和t2共用count。因此,在t1运行时,t2会被阻塞,等待t1运行释放“count对象的同步锁”,t2才能运行。
值得注意的是,虽然是先启动的t1,有时t2也会先于t1运行。
synchronized方法 和 synchronized代码块#
synchronized方法
是用synchronized修饰方法,而synchronized代码块
则是用synchronized修饰代码块。
synchronized方法
1
2
3
|
public synchronized void foo1() {
System.out.println("synchronized methoed");
}
|
synchronized代码块
1
2
3
4
5
|
public void foo2() {
synchronized (this) {
System.out.println("synchronized methoed");
}
}
|
synchronized代码块中的this是指当前对象。也可以将this替换成其他对象,例如将this替换成obj,则foo2()在执行synchronized(obj)时就获取的是obj的同步锁。
synchronized代码块可以更精确的控制冲突限制访问区域,有时候表现更高效率。下面通过一个示例来演示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
// Demo4.java的源码
public class Demo4 {
public synchronized void synMethod() {
for(int i=0; i<1000000; i++)
;
}
public void synBlock() {
synchronized( this ) {
for(int i=0; i<1000000; i++)
;
}
}
public static void main(String[] args) {
Demo4 demo = new Demo4();
long start, diff;
start = System.currentTimeMillis(); // 获取当前时间(millis)
demo.synMethod(); // 调用“synchronized方法”
diff = System.currentTimeMillis() - start; // 获取“时间差值”
System.out.println("synMethod() : "+ diff);
start = System.currentTimeMillis(); // 获取当前时间(millis)
demo.synBlock(); // 调用“synchronized方法块”
diff = System.currentTimeMillis() - start; // 获取“时间差值”
System.out.println("synBlock() : "+ diff);
}
}
|
结果:
1
2
|
synMethod() : 10
synBlock() : 7
|
经过多次实验(10次运行上边的代码),发现有5次synchronized代码块胜出,3次持平,2次失败。
实例锁和全局锁#
实例锁:锁在某一个实例对象上,如果该类是单例,那么该锁也有全局锁的功能。实例锁对应的就是synchronized关键字。
全局锁:该锁针对的是类,无论实例多少个对象,那么线程都共享该锁。全局锁对应的就是static synchronized(或者是锁在该类的class或者classloader对象上)。
关于实例锁和全局锁有一个很形象的例子:
1
2
3
4
5
6
|
pulbic class Something {
public synchronized void isSyncA(){}
public synchronized void isSyncB(){}
public static synchronized void cSyncA(){}
public static synchronized void cSyncB(){}
}
|
假设,Something有两个实例x和y。分析下面4组表达式获取的锁的情况。
(01) x.isSyncA()与x.isSyncB()
(02) x.isSyncA()与y.isSyncA()
(03) x.cSyncA()与y.cSyncB()
(04) x.isSyncA()与Something.cSyncA()
**(01) x.isSyncA()与x.isSyncB():不能被同时访问。**因为isSyncA()和isSyncB()都是访问同一个对象(对象x)的同步锁。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
// LockTest1.java的源码
class Something {
public synchronized void isSyncA(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncA");
}
}catch (InterruptedException ie) {
}
}
public synchronized void isSyncB(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncB");
}
}catch (InterruptedException ie) {
}
}
}
public class LockTest1 {
Something x = new Something();
Something y = new Something();
// 比较(01) x.isSyncA()与x.isSyncB()
private void test1() {
// 新建t11, t11会调用 x.isSyncA()
Thread t11 = new Thread(
new Runnable() {
@Override
public void run() {
x.isSyncA();
}
}, "t11");
// 新建t12, t12会调用 x.isSyncB()
Thread t12 = new Thread(
new Runnable() {
@Override
public void run() {
x.isSyncB();
}
}, "t12");
t11.start(); // 启动t11
t12.start(); // 启动t12
}
public static void main(String[] args) {
LockTest1 demo = new LockTest1();
demo.test1();
}
}
|
运行结果:
1
2
3
4
5
6
7
8
9
10
|
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
|
**(02) x.isSyncA()与y.isSyncA() 可以同时被访问。**因为访问的不是同一个对象的同步锁,x.isSyncA()访问的是x的同步锁,而y.isSyncA()访问的是y的同步锁。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
// LockTest2.java的源码
class Something {
public synchronized void isSyncA(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncA");
}
}catch (InterruptedException ie) {
}
}
public synchronized void isSyncB(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncB");
}
}catch (InterruptedException ie) {
}
}
public static synchronized void cSyncA(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : cSyncA");
}
}catch (InterruptedException ie) {
}
}
public static synchronized void cSyncB(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : cSyncB");
}
}catch (InterruptedException ie) {
}
}
}
public class LockTest2 {
Something x = new Something();
Something y = new Something();
// 比较(02) x.isSyncA()与y.isSyncA()
private void test2() {
// 新建t21, t21会调用 x.isSyncA()
Thread t21 = new Thread(
new Runnable() {
@Override
public void run() {
x.isSyncA();
}
}, "t21");
// 新建t22, t22会调用 x.isSyncB()
Thread t22 = new Thread(
new Runnable() {
@Override
public void run() {
y.isSyncA();
}
}, "t22");
t21.start(); // 启动t21
t22.start(); // 启动t22
}
public static void main(String[] args) {
LockTest2 demo = new LockTest2();
demo.test2();
}
}
|
运行结果:
1
2
3
4
5
6
7
8
9
10
|
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
|
**(03) x.cSyncA()与y.cSyncB() 不能被同时访问。**因为cSyncA()和cSyncB()都是static类型,x.cSyncA()相当于Something.isSyncA(),y.cSyncB()相当于Something.isSyncB(),因此它们共用一个同步锁,不能被同时访问。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
// LockTest3.java的源码
class Something {
public synchronized void isSyncA(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncA");
}
}catch (InterruptedException ie) {
}
}
public synchronized void isSyncB(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncB");
}
}catch (InterruptedException ie) {
}
}
public static synchronized void cSyncA(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : cSyncA");
}
}catch (InterruptedException ie) {
}
}
public static synchronized void cSyncB(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : cSyncB");
}
}catch (InterruptedException ie) {
}
}
}
public class LockTest3 {
Something x = new Something();
Something y = new Something();
// 比较(03) x.cSyncA()与y.cSyncB()
private void test3() {
// 新建t31, t31会调用 x.isSyncA()
Thread t31 = new Thread(
new Runnable() {
@Override
public void run() {
x.cSyncA();
}
}, "t31");
// 新建t32, t32会调用 x.isSyncB()
Thread t32 = new Thread(
new Runnable() {
@Override
public void run() {
y.cSyncB();
}
}, "t32");
t31.start(); // 启动t31
t32.start(); // 启动t32
}
public static void main(String[] args) {
LockTest3 demo = new LockTest3();
demo.test3();
}
}
|
运行结果:
1
2
3
4
5
6
7
8
9
10
|
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
|
**(04) x.isSyncA()与Something.cSyncA() 可以被同时访问。**因为isSyncA()是实例方法,x.isSyncA()使用的是对象x的锁;而cSyncA()是静态方法,Something.cSyncA()可以理解对使用的是“类的锁”。因此,它们是可以被同时访问的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
// LockTest4.java的源码
class Something {
public synchronized void isSyncA(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncA");
}
}catch (InterruptedException ie) {
}
}
public synchronized void isSyncB(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : isSyncB");
}
}catch (InterruptedException ie) {
}
}
public static synchronized void cSyncA(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : cSyncA");
}
}catch (InterruptedException ie) {
}
}
public static synchronized void cSyncB(){
try {
for (int i = 0; i < 5; i++) {
Thread.sleep(100); // 休眠100ms
System.out.println(Thread.currentThread().getName()+" : cSyncB");
}
}catch (InterruptedException ie) {
}
}
}
public class LockTest4 {
Something x = new Something();
Something y = new Something();
// 比较(04) x.isSyncA()与Something.cSyncA()
private void test4() {
// 新建t41, t41会调用 x.isSyncA()
Thread t41 = new Thread(
new Runnable() {
@Override
public void run() {
x.isSyncA();
}
}, "t41");
// 新建t42, t42会调用 x.isSyncB()
Thread t42 = new Thread(
new Runnable() {
@Override
public void run() {
Something.cSyncA();
}
}, "t42");
t41.start(); // 启动t41
t42.start(); // 启动t42
}
public static void main(String[] args) {
LockTest4 demo = new LockTest4();
demo.test4();
}
}
|
运行结果:
1
2
3
4
5
6
7
8
9
10
|
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
|
其他参考