Spring基础

什么是 Spring 框架?

Spring 是一款开源的轻量级 Java 开发框架,旨在提高开发人员的开发效率以及系统的可维护性。

我们一般说 Spring 框架指的都是 Spring Framework,它是很多模块的集合,使用这些模块可以很方便地协助我们进行开发,比如说 Spring 支持 IoC(Inversion of Control:控制反转) 和 AOP(Aspect-Oriented Programming:面向切面编程)、可以很方便地对数据库进行访问、可以很方便地集成第三方组件(电子邮件,任务,调度,缓存等等)、对单元测试支持比较好、支持 RESTful Java 应用程序的开发。

Spring 最核心的思想就是不重新造轮子,开箱即用,提高开发效率。

Spring 翻译过来就是春天的意思,可见其目标和使命就是为 Java 程序员带来春天啊!感动!

🤐 多提一嘴:语言的流行通常需要一个杀手级的应用,Spring 就是 Java 生态的一个杀手级的应用框架。

Spring 提供的核心功能主要是 IoC 和 AOP。学习 Spring ,一定要把 IoC 和 AOP 的核心思想搞懂!

Spring 包含的模块有哪些?

Spring4.x 版本

Spring5.x 版本

Spring5.x 版本中 Web 模块的 Portlet 组件已经被废弃掉,同时增加了用于异步响应式处理的 WebFlux 组件。

Spring 各个模块的依赖关系如下:

Core Container

Spring 框架的核心模块,也可以说是基础模块,主要提供 IoC 依赖注入功能的支持。Spring 其他所有的功能基本都需要依赖于该模块,我们从上面那张 Spring 各个模块的依赖关系图就可以看出来。

  • spring-core:Spring 框架基本的核心工具类。
  • spring-beans:提供对 bean 的创建、配置和管理等功能的支持。
  • spring-context:提供对国际化、事件传播、资源加载等功能的支持。
  • spring-expression:提供对表达式语言(Spring Expression Language) SpEL 的支持,只依赖于 core 模块,不依赖于其他模块,可以单独使用。

AOP

  • spring-aspects:该模块为与 AspectJ 的集成提供支持。
  • spring-aop:提供了面向切面的编程实现。
  • spring-instrument:提供了为 JVM 添加代理(agent)的功能。 具体来讲,它为 Tomcat 提供了一个织入代理,能够为 Tomcat 传递类文 件,就像这些文件是被类加载器加载的一样。没有理解也没关系,这个模块的使用场景非常有限。

Data Access/Integration

  • spring-jdbc:提供了对数据库访问的抽象 JDBC。不同的数据库都有自己独立的 API 用于操作数据库,而 Java 程序只需要和 JDBC API 交互,这样就屏蔽了数据库的影响。
  • spring-tx:提供对事务的支持。
  • spring-orm:提供对 Hibernate、JPA、iBatis 等 ORM 框架的支持。
  • spring-oxm:提供一个抽象层支撑 OXM(Object-to-XML-Mapping),例如:JAXB、Castor、XMLBeans、JiBX 和 XStream 等。
  • spring-jms : 消息服务。自 Spring Framework 4.1 以后,它还提供了对 spring-messaging 模块的继承。

Spring Web

  • spring-web:对 Web 功能的实现提供一些最基础的支持。
  • spring-webmvc:提供对 Spring MVC 的实现。
  • spring-websocket:提供了对 WebSocket 的支持,WebSocket 可以让客户端和服务端进行双向通信。
  • spring-webflux:提供对 WebFlux 的支持。WebFlux 是 Spring Framework 5.0 中引入的新的响应式框架。与 Spring MVC 不同,它不需要 Servlet API,是完全异步。

Messaging

spring-messaging 是从 Spring4.0 开始新加入的一个模块,主要职责是为 Spring 框架集成一些基础的报文传送应用。

Spring Test

Spring 团队提倡测试驱动开发(TDD)。有了控制反转 (IoC)的帮助,单元测试和集成测试变得更简单。

Spring 的测试模块对 JUnit(单元测试框架)、TestNG(类似 JUnit)、Mockito(主要用来 Mock 对象)、PowerMock(解决 Mockito 的问题比如无法模拟 final, static, private 方法)等等常用的测试框架支持的都比较好。

Spring,Spring MVC,Spring Boot 之间什么关系?

很多人对 Spring,Spring MVC,Spring Boot 这三者傻傻分不清楚!这里简单介绍一下这三者,其实很简单,没有什么高深的东西。

Spring 包含了多个功能模块(上面刚刚提到过),其中最重要的是 Spring-Core(主要提供 IoC 依赖注入功能的支持) 模块, Spring 中的其他模块(比如 Spring MVC)的功能实现基本都需要依赖于该模块。

下图对应的是 Spring5.x 版本。

Spring MVC 是 Spring 中的一个很重要的模块,主要赋予 Spring 快速构建 MVC 架构的 Web 程序的能力。MVC 是模型(Model)、视图(View)、控制器(Controller)的简写,其核心思想是通过将业务逻辑、数据、显示分离来组织代码。

使用 Spring 进行开发各种配置过于麻烦比如开启某些 Spring 特性时,需要用 XML 或 Java 进行显式配置。于是,Spring Boot 诞生了!

Spring 旨在简化 J2EE 企业应用程序开发。Spring Boot 旨在简化 Spring 开发(减少配置文件,开箱即用!)。

Spring Boot 只是简化了配置,如果你需要构建 MVC 架构的 Web 程序,你还是需要使用 Spring MVC 作为 MVC 框架,只是说 Spring Boot 帮你简化了 Spring MVC 的很多配置,真正做到开箱即用!

Spring IoC

谈谈自己对于 Spring IoC 的了解

IoC(Inversion of Control:控制反转) 是一种设计思想,而不是一个具体的技术实现。IoC 的思想就是将原本在程序中手动创建对象的控制权,交由 Spring 框架来管理。不过, IoC 并非 Spring 特有,在其他语言中也有应用。

为什么叫控制反转?

  • 控制:指的是对象创建(实例化、管理)的权力
  • 反转:控制权交给外部环境(Spring 框架、IoC 容器)

将对象之间的相互依赖关系交给 IoC 容器来管理,并由 IoC 容器完成对象的注入。这样可以很大程度上简化应用的开发,把应用从复杂的依赖关系中解放出来。 IoC 容器就像是一个工厂一样,当我们需要创建一个对象的时候,只需要配置好配置文件/注解即可,完全不用考虑对象是如何被创建出来的。

在实际项目中一个 Service 类可能依赖了很多其他的类,假如我们需要实例化这个 Service,你可能要每次都要搞清这个 Service 所有底层类的构造函数,这可能会把人逼疯。如果利用 IoC 的话,你只需要配置好,然后在需要的地方引用就行了,这大大增加了项目的可维护性且降低了开发难度。

在 Spring 中, IoC 容器是 Spring 用来实现 IoC 的载体, IoC 容器实际上就是个 Map(key,value),Map 中存放的是各种对象。

Spring 时代我们一般通过 XML 文件来配置 Bean,后来开发人员觉得 XML 文件来配置不太好,于是 SpringBoot 注解配置就慢慢开始流行起来。

相关阅读:

什么是 Spring Bean?

简单来说,Bean 代指的就是那些被 IoC 容器所管理的对象。

我们需要告诉 IoC 容器帮助我们管理哪些对象,这个是通过配置元数据来定义的。配置元数据可以是 XML 文件、注解或者 Java 配置类。

1
2
3
4
<!-- Constructor-arg with 'value' attribute -->
<bean id="..." class="...">
   <constructor-arg value="..."/>
</bean>

下图简单地展示了 IoC 容器如何使用配置元数据来管理对象。

org.springframework.beansorg.springframework.context 这两个包是 IoC 实现的基础,如果想要研究 IoC 相关的源码的话,可以去看看。

将一个类声明为 Bean 的注解有哪些?

  • @Component:通用的注解,可标注任意类为 Spring 组件。如果一个 Bean 不知道属于哪个层,可以使用@Component 注解标注。
  • @Repository : 对应持久层即 Dao 层,主要用于数据库相关操作。
  • @Service : 对应服务层,主要涉及一些复杂的逻辑,需要用到 Dao 层。
  • @Controller : 对应 Spring MVC 控制层,主要用于接受用户请求并调用 Service 层返回数据给前端页面。

@Component 和 @Bean 的区别是什么?

  • @Component 注解作用于类,而@Bean注解作用于方法。
  • @Component通常是通过类路径扫描来自动侦测以及自动装配到 Spring 容器中(我们可以使用 @ComponentScan 注解定义要扫描的路径从中找出标识了需要装配的类自动装配到 Spring 的 bean 容器中)。@Bean 注解通常是我们在标有该注解的方法中定义产生这个 bean,@Bean告诉了 Spring 这是某个类的实例,当我需要用它的时候还给我。
  • @Bean 注解比 @Component 注解的自定义性更强,而且很多地方我们只能通过 @Bean 注解来注册 bean。比如当我们引用第三方库中的类需要装配到 Spring容器时,则只能通过 @Bean来实现。

@Bean注解使用示例:

1
2
3
4
5
6
7
8
@Configuration
public class AppConfig {
    @Bean
    public TransferService transferService() {
        return new TransferServiceImpl();
    }

}

上面的代码相当于下面的 xml 配置

1
2
3
<beans>
    <bean id="transferService" class="com.acme.TransferServiceImpl"/>
</beans>

下面这个例子是通过 @Component 无法实现的。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
@Bean
public OneService getService(status) {
    case (status)  {
        when 1:
                return new serviceImpl1();
        when 2:
                return new serviceImpl2();
        when 3:
                return new serviceImpl3();
    }
}

注入 Bean 的注解有哪些?

Spring 内置的 @Autowired 以及 JDK 内置的 @Resource@Inject 都可以用于注入 Bean。

Annotaion Package Source
@Autowired org.springframework.bean.factory Spring 2.5+
@Resource javax.annotation Java JSR-250
@Inject javax.inject Java JSR-330

@Autowired@Resource使用的比较多一些。

@Autowired 和 @Resource 的区别是什么?

Autowired 属于 Spring 内置的注解,默认的注入方式为byType(根据类型进行匹配),也就是说会优先根据接口类型去匹配并注入 Bean (接口的实现类)。

这会有什么问题呢? 当一个接口存在多个实现类的话,byType这种方式就无法正确注入对象了,因为这个时候 Spring 会同时找到多个满足条件的选择,默认情况下它自己不知道选择哪一个。

这种情况下,注入方式会变为 byName(根据名称进行匹配),这个名称通常就是类名(首字母小写)。就比如说下面代码中的 smsService 就是我这里所说的名称,这样应该比较好理解了吧。

1
2
3
// smsService 就是我们上面所说的名称
@Autowired
private SmsService smsService;

举个例子,SmsService 接口有两个实现类: SmsServiceImpl1SmsServiceImpl2,且它们都已经被 Spring 容器所管理。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
// 报错,byName 和 byType 都无法匹配到 bean
@Autowired
private SmsService smsService;
// 正确注入 SmsServiceImpl1 对象对应的 bean
@Autowired
private SmsService smsServiceImpl1;
// 正确注入  SmsServiceImpl1 对象对应的 bean
// smsServiceImpl1 就是我们上面所说的名称
@Autowired
@Qualifier(value = "smsServiceImpl1")
private SmsService smsService;

我们还是建议通过 @Qualifier 注解来显式指定名称而不是依赖变量的名称。

@Resource属于 JDK 提供的注解,默认注入方式为 byName。如果无法通过名称匹配到对应的 Bean 的话,注入方式会变为byType

@Resource 有两个比较重要且日常开发常用的属性:name(名称)、type(类型)。

1
2
3
4
public @interface Resource {
    String name() default "";
    Class<?> type() default Object.class;
}

如果仅指定 name 属性则注入方式为byName,如果仅指定type属性则注入方式为byType,如果同时指定nametype属性(不建议这么做)则注入方式为byType+byName

1
2
3
4
5
6
7
8
9
// 报错,byName 和 byType 都无法匹配到 bean
@Resource
private SmsService smsService;
// 正确注入 SmsServiceImpl1 对象对应的 bean
@Resource
private SmsService smsServiceImpl1;
// 正确注入 SmsServiceImpl1 对象对应的 bean(比较推荐这种方式)
@Resource(name = "smsServiceImpl1")
private SmsService smsService;

简单总结一下:

  • @Autowired 是 Spring 提供的注解,@Resource 是 JDK 提供的注解。
  • Autowired 默认的注入方式为byType(根据类型进行匹配),@Resource默认注入方式为 byName(根据名称进行匹配)。
  • 当一个接口存在多个实现类的情况下,@Autowired@Resource都需要通过名称才能正确匹配到对应的 Bean。Autowired 可以通过 @Qualifier 注解来显式指定名称,@Resource可以通过 name 属性来显式指定名称。

Bean 的作用域有哪些?

Spring 中 Bean 的作用域通常有下面几种:

  • singleton : IoC 容器中只有唯一的 bean 实例。Spring 中的 bean 默认都是单例的,是对单例设计模式的应用。
  • prototype : 每次获取都会创建一个新的 bean 实例。也就是说,连续 getBean() 两次,得到的是不同的 Bean 实例。
  • request (仅 Web 应用可用): 每一次 HTTP 请求都会产生一个新的 bean(请求 bean),该 bean 仅在当前 HTTP request 内有效。
  • session (仅 Web 应用可用) : 每一次来自新 session 的 HTTP 请求都会产生一个新的 bean(会话 bean),该 bean 仅在当前 HTTP session 内有效。
  • application/global-session (仅 Web 应用可用):每个 Web 应用在启动时创建一个 Bean(应用 Bean),该 bean 仅在当前应用启动时间内有效。
  • websocket (仅 Web 应用可用):每一次 WebSocket 会话产生一个新的 bean。

如何配置 bean 的作用域呢?

xml 方式:

1
<bean id="..." class="..." scope="singleton"></bean>

注解方式:

1
2
3
4
5
@Bean
@Scope(value = ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public Person personPrototype() {
    return new Person();
}

Bean 是线程安全的吗?

Spring 框架中的 Bean 是否线程安全,取决于其作用域和状态。

我们这里以最常用的两种作用域 prototype 和 singleton 为例介绍。几乎所有场景的 Bean 作用域都是使用默认的 singleton ,重点关注 singleton 作用域即可。

prototype 作用域下,每次获取都会创建一个新的 bean 实例,不存在资源竞争问题,所以不存在线程安全问题。singleton 作用域下,IoC 容器中只有唯一的 bean 实例,可能会存在资源竞争问题(取决于 Bean 是否有状态)。如果这个 bean 是有状态的话,那就存在线程安全问题(有状态 Bean 是指包含可变的成员变量的对象)。

不过,大部分 Bean 实际都是无状态(没有定义可变的成员变量)的(比如 Dao、Service),这种情况下, Bean 是线程安全的。

对于有状态单例 Bean 的线程安全问题,常见的有两种解决办法:

  1. 在 Bean 中尽量避免定义可变的成员变量。
  2. 在类中定义一个 ThreadLocal 成员变量,将需要的可变成员变量保存在 ThreadLocal 中(推荐的一种方式)。

Bean 的生命周期了解么?

  • Bean 容器找到配置文件中 Spring Bean 的定义。
  • Bean 容器利用 Java Reflection API 创建一个 Bean 的实例。
  • 如果涉及到一些属性值 利用 set()方法设置一些属性值。
  • 如果 Bean 实现了 BeanNameAware 接口,调用 setBeanName()方法,传入 Bean 的名字。
  • 如果 Bean 实现了 BeanClassLoaderAware 接口,调用 setBeanClassLoader()方法,传入 ClassLoader对象的实例。
  • 如果 Bean 实现了 BeanFactoryAware 接口,调用 setBeanFactory()方法,传入 BeanFactory对象的实例。
  • 与上面的类似,如果实现了其他 *.Aware接口,就调用相应的方法。
  • 如果有和加载这个 Bean 的 Spring 容器相关的 BeanPostProcessor 对象,执行postProcessBeforeInitialization() 方法
  • 如果 Bean 实现了InitializingBean接口,执行afterPropertiesSet()方法。
  • 如果 Bean 在配置文件中的定义包含 init-method 属性,执行指定的方法。
  • 如果有和加载这个 Bean 的 Spring 容器相关的 BeanPostProcessor 对象,执行postProcessAfterInitialization() 方法
  • 当要销毁 Bean 的时候,如果 Bean 实现了 DisposableBean 接口,执行 destroy() 方法。
  • 当要销毁 Bean 的时候,如果 Bean 在配置文件中的定义包含 destroy-method 属性,执行指定的方法。

图示:

与之比较类似的中文版本:

Spring AoP

谈谈自己对于 AOP 的了解

AOP(Aspect-Oriented Programming:面向切面编程)能够将那些与业务无关,却为业务模块所共同调用的逻辑或责任(例如事务处理、日志管理、权限控制等)封装起来,便于减少系统的重复代码,降低模块间的耦合度,并有利于未来的可拓展性和可维护性。

Spring AOP 就是基于动态代理的,如果要代理的对象,实现了某个接口,那么 Spring AOP 会使用 JDK Proxy,去创建代理对象,而对于没有实现接口的对象,就无法使用 JDK Proxy 去进行代理了,这时候 Spring AOP 会使用 Cglib 生成一个被代理对象的子类来作为代理,如下图所示:

当然你也可以使用 AspectJ !Spring AOP 已经集成了 AspectJ ,AspectJ 应该算的上是 Java 生态系统中最完整的 AOP 框架了。

AOP 切面编程设计到的一些专业术语:

术语 含义
目标(Target) 被通知的对象
代理(Proxy) 向目标对象应用通知之后创建的代理对象
连接点(JoinPoint) 目标对象的所属类中,定义的所有方法均为连接点
切入点(Pointcut) 被切面拦截 / 增强的连接点(切入点一定是连接点,连接点不一定是切入点)
通知(Advice) 增强的逻辑 / 代码,也即拦截到目标对象的连接点之后要做的事情
切面(Aspect) 切入点(Pointcut)+通知(Advice)
Weaving(织入) 将通知应用到目标对象,进而生成代理对象的过程动作

Spring AOP 和 AspectJ AOP 有什么区别?

Spring AOP 属于运行时增强,而 AspectJ 是编译时增强。 Spring AOP 基于代理(Proxying),而 AspectJ 基于字节码操作(Bytecode Manipulation)。

Spring AOP 已经集成了 AspectJ ,AspectJ 应该算的上是 Java 生态系统中最完整的 AOP 框架了。AspectJ 相比于 Spring AOP 功能更加强大,但是 Spring AOP 相对来说更简单,

如果我们的切面比较少,那么两者性能差异不大。但是,当切面太多的话,最好选择 AspectJ ,它比 Spring AOP 快很多。

AspectJ 定义的通知类型有哪些?

  • Before(前置通知):目标对象的方法调用之前触发
  • After (后置通知):目标对象的方法调用之后触发
  • AfterReturning(返回通知):目标对象的方法调用完成,在返回结果值之后触发
  • AfterThrowing(异常通知):目标对象的方法运行中抛出 / 触发异常后触发。AfterReturning 和 AfterThrowing 两者互斥。如果方法调用成功无异常,则会有返回值;如果方法抛出了异常,则不会有返回值。
  • Around (环绕通知):编程式控制目标对象的方法调用。环绕通知是所有通知类型中可操作范围最大的一种,因为它可以直接拿到目标对象,以及要执行的方法,所以环绕通知可以任意的在目标对象的方法调用前后搞事,甚至不调用目标对象的方法

多个切面的执行顺序如何控制?

1、通常使用@Order 注解直接定义切面顺序

1
2
3
4
5
// 值越小优先级越高
@Order(3)
@Component
@Aspect
public class LoggingAspect implements Ordered {

2、实现Ordered 接口重写 getOrder 方法。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
@Component
@Aspect
public class LoggingAspect implements Ordered {
    // ....

    @Override
    public int getOrder() {
        // 返回值越小优先级越高
        return 1;
    }
}

Spring MVC

说说自己对于 Spring MVC 了解?

MVC 是模型(Model)、视图(View)、控制器(Controller)的简写,其核心思想是通过将业务逻辑、数据、显示分离来组织代码。

网上有很多人说 MVC 不是设计模式,只是软件设计规范,我个人更倾向于 MVC 同样是众多设计模式中的一种。java-design-patterns 项目中就有关于 MVC 的相关介绍。

想要真正理解 Spring MVC,我们先来看看 Model 1 和 Model 2 这两个没有 Spring MVC 的时代。

Model 1 时代

很多学 Java 后端比较晚的朋友可能并没有接触过 Model 1 时代下的 JavaWeb 应用开发。在 Model1 模式下,整个 Web 应用几乎全部用 JSP 页面组成,只用少量的 JavaBean 来处理数据库连接、访问等操作。

这个模式下 JSP 即是控制层(Controller)又是表现层(View)。显而易见,这种模式存在很多问题。比如控制逻辑和表现逻辑混杂在一起,导致代码重用率极低;再比如前端和后端相互依赖,难以进行测试维护并且开发效率极低。

Model 2 时代

学过 Servlet 并做过相关 Demo 的朋友应该了解“Java Bean(Model)+ JSP(View)+Servlet(Controller) ”这种开发模式,这就是早期的 JavaWeb MVC 开发模式。

  • Model:系统涉及的数据,也就是 dao 和 bean。
  • View:展示模型中的数据,只是用来展示。
  • Controller:处理用户请求都发送给 ,返回数据给 JSP 并展示给用户。

Model2 模式下还存在很多问题,Model2 的抽象和封装程度还远远不够,使用 Model2 进行开发时不可避免地会重复造轮子,这就大大降低了程序的可维护性和复用性。

于是,很多 JavaWeb 开发相关的 MVC 框架应运而生比如 Struts2,但是 Struts2 比较笨重。

Spring MVC 时代

随着 Spring 轻量级开发框架的流行,Spring 生态圈出现了 Spring MVC 框架, Spring MVC 是当前最优秀的 MVC 框架。相比于 Struts2 , Spring MVC 使用更加简单和方便,开发效率更高,并且 Spring MVC 运行速度更快。

MVC 是一种设计模式,Spring MVC 是一款很优秀的 MVC 框架。Spring MVC 可以帮助我们进行更简洁的 Web 层的开发,并且它天生与 Spring 框架集成。Spring MVC 下我们一般把后端项目分为 Service 层(处理业务)、Dao 层(数据库操作)、Entity 层(实体类)、Controller 层(控制层,返回数据给前台页面)。

Spring MVC 的核心组件有哪些?

记住了下面这些组件,也就记住了 SpringMVC 的工作原理。

  • DispatcherServlet核心的中央处理器,负责接收请求、分发,并给予客户端响应。
  • HandlerMapping处理器映射器,根据 uri 去匹配查找能处理的 Handler ,并会将请求涉及到的拦截器和 Handler 一起封装。
  • HandlerAdapter处理器适配器,根据 HandlerMapping 找到的 Handler ,适配执行对应的 Handler
  • Handler请求处理器,处理实际请求的处理器。
  • ViewResolver视图解析器,根据 Handler 返回的逻辑视图 / 视图,解析并渲染真正的视图,并传递给 DispatcherServlet 响应客户端

SpringMVC 工作原理了解吗?

Spring MVC 原理如下图所示:

SpringMVC 工作原理的图解我没有自己画,直接图省事在网上找了一个非常清晰直观的,原出处不明。

流程说明(重要):

  1. 客户端(浏览器)发送请求, DispatcherServlet拦截请求。
  2. DispatcherServlet 根据请求信息调用 HandlerMappingHandlerMapping 根据 uri 去匹配查找能处理的 Handler(也就是我们平常说的 Controller 控制器) ,并会将请求涉及到的拦截器和 Handler 一起封装。
  3. DispatcherServlet 调用 HandlerAdapter适配器执行 Handler
  4. Handler 完成对用户请求的处理后,会返回一个 ModelAndView 对象给DispatcherServletModelAndView 顾名思义,包含了数据模型以及相应的视图的信息。Model 是返回的数据对象,View 是个逻辑上的 View
  5. ViewResolver 会根据逻辑 View 查找实际的 View
  6. DispaterServlet 把返回的 Model 传给 View(视图渲染)。
  7. View 返回给请求者(浏览器)

统一异常处理怎么做?

推荐使用注解的方式统一异常处理,具体会使用到 @ControllerAdvice + @ExceptionHandler 这两个注解 。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
@ControllerAdvice
@ResponseBody
public class GlobalExceptionHandler {

    @ExceptionHandler(BaseException.class)
    public ResponseEntity<?> handleAppException(BaseException ex, HttpServletRequest request) {
      //......
    }

    @ExceptionHandler(value = ResourceNotFoundException.class)
    public ResponseEntity<ErrorReponse> handleResourceNotFoundException(ResourceNotFoundException ex, HttpServletRequest request) {
      //......
    }
}

这种异常处理方式下,会给所有或者指定的 Controller 织入异常处理的逻辑(AOP),当 Controller 中的方法抛出异常的时候,由被@ExceptionHandler 注解修饰的方法进行处理。

ExceptionHandlerMethodResolvergetMappedMethod 方法决定了异常具体被哪个被 @ExceptionHandler 注解修饰的方法处理异常。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
@Nullable
	private Method getMappedMethod(Class<? extends Throwable> exceptionType) {
		List<Class<? extends Throwable>> matches = new ArrayList<>();
    //找到可以处理的所有异常信息。mappedMethods 中存放了异常和处理异常的方法的对应关系
		for (Class<? extends Throwable> mappedException : this.mappedMethods.keySet()) {
			if (mappedException.isAssignableFrom(exceptionType)) {
				matches.add(mappedException);
			}
		}
    // 不为空说明有方法处理异常
		if (!matches.isEmpty()) {
      // 按照匹配程度从小到大排序
			matches.sort(new ExceptionDepthComparator(exceptionType));
      // 返回处理异常的方法
			return this.mappedMethods.get(matches.get(0));
		}
		else {
			return null;
		}
	}

从源代码看出:getMappedMethod()会首先找到可以匹配处理异常的所有方法信息,然后对其进行从小到大的排序,最后取最小的那一个匹配的方法(即匹配度最高的那个)。

Spring 框架中用到了哪些设计模式?

关于下面这些设计模式的详细介绍,可以看我写的 Spring 中的设计模式详解 这篇文章。

  • 工厂设计模式 : Spring 使用工厂模式通过 BeanFactoryApplicationContext 创建 bean 对象。
  • 代理设计模式 : Spring AOP 功能的实现。
  • 单例设计模式 : Spring 中的 Bean 默认都是单例的。
  • 模板方法模式 : Spring 中 jdbcTemplatehibernateTemplate 等以 Template 结尾的对数据库操作的类,它们就使用到了模板模式。
  • 包装器设计模式 : 我们的项目需要连接多个数据库,而且不同的客户在每次访问中根据需要会去访问不同的数据库。这种模式让我们可以根据客户的需求能够动态切换不同的数据源。
  • 观察者模式: Spring 事件驱动模型就是观察者模式很经典的一个应用。
  • 适配器模式 : Spring AOP 的增强或通知(Advice)使用到了适配器模式、spring MVC 中也是用到了适配器模式适配Controller

Spring 事务

Spring 管理事务的方式有几种?

  • 编程式事务:在代码中硬编码(不推荐使用) : 通过 TransactionTemplate或者 TransactionManager 手动管理事务,实际应用中很少使用,但是对于你理解 Spring 事务管理原理有帮助。
  • 声明式事务:在 XML 配置文件中配置或者直接基于注解(推荐使用) : 实际是通过 AOP 实现(基于@Transactional 的全注解方式使用最多)

Spring 事务中哪几种事务传播行为?

事务传播行为是为了解决业务层方法之间互相调用的事务问题

当事务方法被另一个事务方法调用时,必须指定事务应该如何传播。例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己的事务中运行。

正确的事务传播行为可能的值如下:

1.TransactionDefinition.PROPAGATION_REQUIRED

使用的最多的一个事务传播行为,我们平时经常使用的@Transactional注解默认使用就是这个事务传播行为。如果当前存在事务,则加入该事务;如果当前没有事务,则创建一个新的事务。

2.TransactionDefinition.PROPAGATION_REQUIRES_NEW

创建一个新的事务,如果当前存在事务,则把当前事务挂起。也就是说不管外部方法是否开启事务,Propagation.REQUIRES_NEW修饰的内部方法会新开启自己的事务,且开启的事务相互独立,互不干扰。

3.TransactionDefinition.PROPAGATION_NESTED

如果当前存在事务,则创建一个事务作为当前事务的嵌套事务来运行;如果当前没有事务,则该取值等价于TransactionDefinition.PROPAGATION_REQUIRED

4.TransactionDefinition.PROPAGATION_MANDATORY

如果当前存在事务,则加入该事务;如果当前没有事务,则抛出异常。(mandatory:强制性)

这个使用的很少。

若是错误的配置以下 3 种事务传播行为,事务将不会发生回滚:

  • TransactionDefinition.PROPAGATION_SUPPORTS: 如果当前存在事务,则加入该事务;如果当前没有事务,则以非事务的方式继续运行。
  • TransactionDefinition.PROPAGATION_NOT_SUPPORTED: 以非事务方式运行,如果当前存在事务,则把当前事务挂起。
  • TransactionDefinition.PROPAGATION_NEVER: 以非事务方式运行,如果当前存在事务,则抛出异常。

Spring 事务中的隔离级别有哪几种?

和事务传播行为这块一样,为了方便使用,Spring 也相应地定义了一个枚举类:Isolation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public enum Isolation {

    DEFAULT(TransactionDefinition.ISOLATION_DEFAULT),

    READ_UNCOMMITTED(TransactionDefinition.ISOLATION_READ_UNCOMMITTED),

    READ_COMMITTED(TransactionDefinition.ISOLATION_READ_COMMITTED),

    REPEATABLE_READ(TransactionDefinition.ISOLATION_REPEATABLE_READ),

    SERIALIZABLE(TransactionDefinition.ISOLATION_SERIALIZABLE);

    private final int value;

    Isolation(int value) {
        this.value = value;
    }

    public int value() {
        return this.value;
    }

}

下面我依次对每一种事务隔离级别进行介绍:

  • TransactionDefinition.ISOLATION_DEFAULT :使用后端数据库默认的隔离级别,MySQL 默认采用的 REPEATABLE_READ 隔离级别 Oracle 默认采用的 READ_COMMITTED 隔离级别.
  • TransactionDefinition.ISOLATION_READ_UNCOMMITTED :最低的隔离级别,使用这个隔离级别很少,因为它允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
  • TransactionDefinition.ISOLATION_READ_COMMITTED : 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
  • TransactionDefinition.ISOLATION_REPEATABLE_READ : 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
  • TransactionDefinition.ISOLATION_SERIALIZABLE : 最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。但是这将严重影响程序的性能。通常情况下也不会用到该级别。

@Transactional(rollbackFor = Exception.class)注解了解吗?

Exception 分为运行时异常 RuntimeException 和非运行时异常。事务管理对于企业应用来说是至关重要的,即使出现异常情况,它也可以保证数据的一致性。

@Transactional 注解作用于类上时,该类的所有 public 方法将都具有该类型的事务属性,同时,我们也可以在方法级别使用该标注来覆盖类级别的定义。如果类或者方法加了这个注解,那么这个类里面的方法抛出异常,就会回滚,数据库里面的数据也会回滚。

@Transactional 注解中如果不配置rollbackFor属性,那么事务只会在遇到RuntimeException的时候才会回滚,加上 rollbackFor=Exception.class,可以让事务在遇到非运行时异常时也回滚。

Spring 常用注解

@SpringBootApplication

这里先单独拎出@SpringBootApplication 注解说一下,虽然我们一般不会主动去使用它。

Guide:这个注解是 Spring Boot 项目的基石,创建 SpringBoot 项目之后会默认在主类加上。

1
2
3
4
5
6
@SpringBootApplication
public class SpringSecurityJwtGuideApplication {
      public static void main(java.lang.String[] args) {
        SpringApplication.run(SpringSecurityJwtGuideApplication.class, args);
    }
}

我们可以把 @SpringBootApplication看作是 @Configuration@EnableAutoConfiguration@ComponentScan 注解的集合。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
package org.springframework.boot.autoconfigure;
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@SpringBootConfiguration
@EnableAutoConfiguration
@ComponentScan(excludeFilters = {
		@Filter(type = FilterType.CUSTOM, classes = TypeExcludeFilter.class),
		@Filter(type = FilterType.CUSTOM, classes = AutoConfigurationExcludeFilter.class) })
public @interface SpringBootApplication {
   ......
}

package org.springframework.boot;
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Configuration
public @interface SpringBootConfiguration {

}

根据 SpringBoot 官网,这三个注解的作用分别是:

  • @EnableAutoConfiguration:启用 SpringBoot 的自动配置机制
  • @ComponentScan:扫描被@Component (@Repository,@Service,@Controller)注解的 bean,注解默认会扫描该类所在的包下所有的类。
  • @Configuration:允许在 Spring 上下文中注册额外的 bean 或导入其他配置类

@SpringBootApplication

这里先单独拎出@SpringBootApplication 注解说一下,虽然我们一般不会主动去使用它。

Guide:这个注解是 Spring Boot 项目的基石,创建 SpringBoot 项目之后会默认在主类加上。

1
2
3
4
5
6
@SpringBootApplication
public class SpringSecurityJwtGuideApplication {
      public static void main(java.lang.String[] args) {
        SpringApplication.run(SpringSecurityJwtGuideApplication.class, args);
    }
}

我们可以把 @SpringBootApplication看作是 @Configuration@EnableAutoConfiguration@ComponentScan 注解的集合。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
package org.springframework.boot.autoconfigure;
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@SpringBootConfiguration
@EnableAutoConfiguration
@ComponentScan(excludeFilters = {
		@Filter(type = FilterType.CUSTOM, classes = TypeExcludeFilter.class),
		@Filter(type = FilterType.CUSTOM, classes = AutoConfigurationExcludeFilter.class) })
public @interface SpringBootApplication {
   ......
}

package org.springframework.boot;
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Configuration
public @interface SpringBootConfiguration {

}

根据 SpringBoot 官网,这三个注解的作用分别是:

  • @EnableAutoConfiguration:启用 SpringBoot 的自动配置机制
  • @ComponentScan:扫描被@Component (@Repository,@Service,@Controller)注解的 bean,注解默认会扫描该类所在的包下所有的类。
  • @Configuration:允许在 Spring 上下文中注册额外的 bean 或导入其他配置类

Spring Bean 相关

@Autowired

自动导入对象到类中,被注入进的类同样要被 Spring 容器管理比如:Service 类注入到 Controller 类中。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@Service
public class UserService {
  ......
}

@RestController
@RequestMapping("/users")
public class UserController {
   @Autowired
   private UserService userService;
   ......
}

@Component,@Repository,@Service, @Controller

我们一般使用 @Autowired 注解让 Spring 容器帮我们自动装配 bean。要想把类标识成可用于 @Autowired 注解自动装配的 bean 的类,可以采用以下注解实现:

  • @Component:通用的注解,可标注任意类为 Spring 组件。如果一个 Bean 不知道属于哪个层,可以使用@Component 注解标注。
  • @Repository : 对应持久层即 Dao 层,主要用于数据库相关操作。
  • @Service : 对应服务层,主要涉及一些复杂的逻辑,需要用到 Dao 层。
  • @Controller : 对应 Spring MVC 控制层,主要用于接受用户请求并调用 Service 层返回数据给前端页面。

@RestController

@RestController注解是@Controller@ResponseBody的合集,表示这是个控制器 bean,并且是将函数的返回值直接填入 HTTP 响应体中,是 REST 风格的控制器。

Guide:现在都是前后端分离,说实话我已经很久没有用过@Controller。如果你的项目太老了的话,就当我没说。

单独使用 @Controller 不加 @ResponseBody的话一般是用在要返回一个视图的情况,这种情况属于比较传统的 Spring MVC 的应用,对应于前后端不分离的情况。@Controller +@ResponseBody 返回 JSON 或 XML 形式数据

关于@RestController@Controller的对比,请看这篇文章:@RestController vs @Controller

@Scope

声明 Spring Bean 的作用域,使用方法:

1
2
3
4
5
@Bean
@Scope("singleton")
public Person personSingleton() {
    return new Person();
}

四种常见的 Spring Bean 的作用域:

  • singleton : 唯一 bean 实例,Spring 中的 bean 默认都是单例的。
  • prototype : 每次请求都会创建一个新的 bean 实例。
  • request : 每一次 HTTP 请求都会产生一个新的 bean,该 bean 仅在当前 HTTP request 内有效。
  • session : 每一个 HTTP Session 会产生一个新的 bean,该 bean 仅在当前 HTTP session 内有效。

@Configuration

一般用来声明配置类,可以使用 @Component注解替代,不过使用@Configuration注解声明配置类更加语义化。

1
2
3
4
5
6
7
8
@Configuration
public class AppConfig {
    @Bean
    public TransferService transferService() {
        return new TransferServiceImpl();
    }

}

处理 HTTP 请求

GET:请求从服务器获取特定资源。举个例子:GET /users(获取所有学生)

POST:在服务器上创建一个新的资源。举个例子:POST /users(创建学生)

PUT:更新服务器上的资源(客户端提供更新后的整个资源)。举个例子:PUT /users/12(更新编号为 12 的学生)

DELETE:从服务器删除特定的资源。举个例子:DELETE /users/12(删除编号为 12 的学生)

PATCH:更新服务器上的资源(客户端提供更改的属性,可以看做作是部分更新),使用的比较少,这里就不举例子了。

@GetMapping(“users”)

等于@RequestMapping(value="/users",method=RequestMethod.GET)

1
2
3
4
@GetMapping("/users")
public ResponseEntity<List<User>> getAllUsers() {
    return userRepository.findAll();
}

@PostMapping(“users”)

等于@RequestMapping(value="/users",method=RequestMethod.POST)

1
2
3
4
@PostMapping("/users")
public ResponseEntity<User> createUser(@Valid @RequestBody UserCreateRequest userCreateRequest) {
    return userRespository.save(userCreateRequest);
}

@PutMapping("/users/{userId}")

等于@RequestMapping(value="/users/{userId}",method=RequestMethod.PUT)

1
2
3
4
5
@PutMapping("/users/{userId}")
public ResponseEntity<User> updateUser(@PathVariable(value = "userId") Long userId,
                                       @Valid @RequestBody UserUpdateRequest userUpdateRequest) {
    // ......
}

@DeleteMapping("/users/{userId}")

等于@RequestMapping(value="/users/{userId}",method=RequestMethod.DELETE)

1
2
3
4
@DeleteMapping("/users/{userId}")
public ResponseEntity deleteUser(@PathVariable(value = "userId") Long userId){
    // ......
}

前后端传值

@PathVariable@RequestParam

@PathVariable用于获取路径参数,@RequestParam用于获取查询参数。

举个简单的例子:

1
2
3
4
5
6
@GetMapping("/klasses/{klassId}/teachers")
public List<Teacher> getKlassRelatedTeachers(
    @PathVariable("klassId") Long klassId,
    @RequestParam(value = "type", required = false) String type ) {
    // ...
}

如果我们请求的 url 是:/klasses/123456/teachers?type=web

那么我们服务获取到的数据就是:klassId=123456,type=web

@RequestBody

用于读取 Request 请求(可能是 POST,PUT,DELETE,GET 请求)的 body 部分并且Content-Type 为 application/json 格式的数据,接收到数据之后会自动将数据绑定到 Java 对象上去。系统会使用HttpMessageConverter或者自定义的HttpMessageConverter将请求的 body 中的 json 字符串转换为 java 对象。

我用一个简单的例子来给演示一下基本使用!

我们有一个注册的接口:

1
2
3
4
5
@PostMapping("/sign-up")
public ResponseEntity signUp(@RequestBody @Valid UserRegisterRequest userRegisterRequest) {
  userService.save(userRegisterRequest);
  return ResponseEntity.ok().build();
}

UserRegisterRequest对象:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
@Data
@AllArgsConstructor
@NoArgsConstructor
public class UserRegisterRequest {
    @NotBlank
    private String userName;
    @NotBlank
    private String password;
    @NotBlank
    private String fullName;
}

我们发送 post 请求到这个接口,并且 body 携带 JSON 数据:

1
2
3
4
5
{
    "userName": "coder",
    "fullName": "shuangkou",
    "password": "123456"
}

这样我们的后端就可以直接把 json 格式的数据映射到我们的 UserRegisterRequest 类上。

需要注意的是:一个请求方法只能有一个@RequestBody,但是可以有多个@RequestParam@PathVariable。 如果你的方法必须要用两个 @RequestBody来接受数据的话,大概率是你的数据库设计或者系统设计出问题了

读取配置信息

很多时候我们需要将一些常用的配置信息比如阿里云 oss、发送短信、微信认证的相关配置信息等等放到配置文件中。

下面我们来看一下 Spring 为我们提供了哪些方式帮助我们从配置文件中读取这些配置信息。

我们的数据源application.yml内容如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
wuhan2020: 2020年初武汉爆发了新型冠状病毒,疫情严重,但是,我相信一切都会过去!武汉加油!中国加油!

my-profile:
  name: Guide哥
  email: koushuangbwcx@163.com

library:
  location: 湖北武汉加油中国加油
  books:
    - name: 天才基本法
      description: 二十二岁的林朝夕在父亲确诊阿尔茨海默病这天,得知自己暗恋多年的校园男神裴之即将出国深造的消息——对方考取的学校,恰是父亲当年为她放弃的那所。
    - name: 时间的秩序
      description: 为什么我们记得过去,而非未来?时间“流逝”意味着什么?是我们存在于时间之内,还是时间存在于我们之中?卡洛·罗韦利用诗意的文字,邀请我们思考这一亘古难题——时间的本质。
    - name: 了不起的我
      description: 如何养成一个新习惯?如何让心智变得更成熟?如何拥有高质量的关系? 如何走出人生的艰难时刻?

@Value(常用)

使用 @Value("${property}") 读取比较简单的配置信息:

1
2
@Value("${wuhan2020}")
String wuhan2020;

@ConfigurationProperties(常用)

通过@ConfigurationProperties读取配置信息并与 bean 绑定。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
@Component
@ConfigurationProperties(prefix = "library")
class LibraryProperties {
    @NotEmpty
    private String location;
    private List<Book> books;

    @Setter
    @Getter
    @ToString
    static class Book {
        String name;
        String description;
    }
  省略getter/setter
  ......
}

你可以像使用普通的 Spring bean 一样,将其注入到类中使用。

@PropertySource(不常用)

@PropertySource读取指定 properties 文件

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@Component
@PropertySource("classpath:website.properties")

class WebSite {
    @Value("${url}")
    private String url;

  省略getter/setter
  ......
}

参数校验

数据的校验的重要性就不用说了,即使在前端对数据进行校验的情况下,我们还是要对传入后端的数据再进行一遍校验,避免用户绕过浏览器直接通过一些 HTTP 工具直接向后端请求一些违法数据。

JSR(Java Specification Requests) 是一套 JavaBean 参数校验的标准,它定义了很多常用的校验注解,我们可以直接将这些注解加在我们 JavaBean 的属性上面,这样就可以在需要校验的时候进行校验了,非常方便!

校验的时候我们实际用的是 Hibernate Validator 框架。Hibernate Validator 是 Hibernate 团队最初的数据校验框架,Hibernate Validator 4.x 是 Bean Validation 1.0(JSR 303)的参考实现,Hibernate Validator 5.x 是 Bean Validation 1.1(JSR 349)的参考实现,目前最新版的 Hibernate Validator 6.x 是 Bean Validation 2.0(JSR 380)的参考实现。

SpringBoot 项目的 spring-boot-starter-web 依赖中已经有 hibernate-validator 包,不需要引用相关依赖。如下图所示(通过 idea 插件—Maven Helper 生成):

:更新版本的 spring-boot-starter-web 依赖中不再有 hibernate-validator 包(如 2.3.11.RELEASE),需要自己引入 spring-boot-starter-validation 依赖。

一些常用的字段验证的注解

  • @NotEmpty 被注释的字符串的不能为 null 也不能为空
  • @NotBlank 被注释的字符串非 null,并且必须包含一个非空白字符
  • @Null 被注释的元素必须为 null
  • @NotNull 被注释的元素必须不为 null
  • @AssertTrue 被注释的元素必须为 true
  • @AssertFalse 被注释的元素必须为 false
  • @Pattern(regex=,flag=)被注释的元素必须符合指定的正则表达式
  • @Email 被注释的元素必须是 Email 格式。
  • @Min(value)被注释的元素必须是一个数字,其值必须大于等于指定的最小值
  • @Max(value)被注释的元素必须是一个数字,其值必须小于等于指定的最大值
  • @DecimalMin(value)被注释的元素必须是一个数字,其值必须大于等于指定的最小值
  • @DecimalMax(value) 被注释的元素必须是一个数字,其值必须小于等于指定的最大值
  • @Size(max=, min=)被注释的元素的大小必须在指定的范围内
  • @Digits(integer, fraction)被注释的元素必须是一个数字,其值必须在可接受的范围内
  • @Past被注释的元素必须是一个过去的日期
  • @Future 被注释的元素必须是一个将来的日期

验证请求体(RequestBody)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Person {

    @NotNull(message = "classId 不能为空")
    private String classId;

    @Size(max = 33)
    @NotNull(message = "name 不能为空")
    private String name;

    @Pattern(regexp = "((^Man$|^Woman$|^UGM$))", message = "sex 值不在可选范围")
    @NotNull(message = "sex 不能为空")
    private String sex;

    @Email(message = "email 格式不正确")
    @NotNull(message = "email 不能为空")
    private String email;

}

我们在需要验证的参数上加上了@Valid注解,如果验证失败,它将抛出MethodArgumentNotValidException

1
2
3
4
5
6
7
8
9
@RestController
@RequestMapping("/api")
public class PersonController {

    @PostMapping("/person")
    public ResponseEntity<Person> getPerson(@RequestBody @Valid Person person) {
        return ResponseEntity.ok().body(person);
    }
}

验证请求参数(Path Variables 和 Request Parameters)

一定一定不要忘记在类上加上 @Validated 注解了,这个参数可以告诉 Spring 去校验方法参数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@RestController
@RequestMapping("/api")
@Validated
public class PersonController {

    @GetMapping("/person/{id}")
    public ResponseEntity<Integer> getPersonByID(@Valid @PathVariable("id") @Max(value = 5,message = "超过 id 的范围了") Integer id) {
        return ResponseEntity.ok().body(id);
    }
}

事务 @Transactional

在要开启事务的方法上使用@Transactional注解即可!

1
2
3
4
@Transactional(rollbackFor = Exception.class)
public void save() {
  ......
}

我们知道 Exception 分为运行时异常 RuntimeException 和非运行时异常。在@Transactional注解中如果不配置rollbackFor属性,那么事务只会在遇到RuntimeException的时候才会回滚,加上rollbackFor=Exception.class,可以让事务在遇到非运行时异常时也回滚。

@Transactional 注解一般可以作用在或者方法上。

  • 作用于类:当把@Transactional 注解放在类上时,表示所有该类的 public 方法都配置相同的事务属性信息。
  • 作用于方法:当类配置了@Transactional,方法也配置了@Transactional,方法的事务会覆盖类的事务配置信息。

json 数据处理

过滤 json 数据

@JsonIgnoreProperties 作用在类上用于过滤掉特定字段不返回或者不解析。

1
2
3
4
5
6
7
8
9
//生成json时将userRoles属性过滤
@JsonIgnoreProperties({"userRoles"})
public class User {

    private String userName;
    private String fullName;
    private String password;
    private List<UserRole> userRoles = new ArrayList<>();
}

@JsonIgnore一般用于类的属性上,作用和上面的@JsonIgnoreProperties 一样。

1
2
3
4
5
6
7
8
9
public class User {

    private String userName;
    private String fullName;
    private String password;
   //生成json时将userRoles属性过滤
    @JsonIgnore
    private List<UserRole> userRoles = new ArrayList<>();
}

10.2. 格式化 json 数据

@JsonFormat一般用来格式化 json 数据。

比如:

1
2
@JsonFormat(shape=JsonFormat.Shape.STRING, pattern="yyyy-MM-dd HH:mm:ss", timezone="GMT")
private LocalDateTime localDateTime;

10.3. 扁平化对象

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Getter
@Setter
@ToString
public class Account {
    private Location location;
    private PersonInfo personInfo;

  @Getter
  @Setter
  @ToString
  public static class Location {
     private String provinceName;
     private String countyName;
  }
  @Getter
  @Setter
  @ToString
  public static class PersonInfo {
    private String userName;
    private String fullName;
  }
}

未扁平化之前:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{
  "location": {
    "provinceName": "湖北",
    "countyName": "武汉"
  },
  "personInfo": {
    "userName": "coder1234",
    "fullName": "shaungkou"
  }
}

使用@JsonUnwrapped 扁平对象之后:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@Getter
@Setter
@ToString
public class Account {
    @JsonUnwrapped
    private Location location;
    @JsonUnwrapped
    private PersonInfo personInfo;
    ......
}
1
2
3
4
5
6
{
  "provinceName": "湖北",
  "countyName": "武汉",
  "userName": "coder1234",
  "fullName": "shaungkou"
}

测试相关

@ActiveProfiles一般作用于测试类上, 用于声明生效的 Spring 配置文件。

1
2
3
4
5
6
@SpringBootTest(webEnvironment = RANDOM_PORT)
@ActiveProfiles("test")
@Slf4j
public abstract class TestBase {
  ......
}

@Test声明一个方法为测试方法

@Transactional被声明的测试方法的数据会回滚,避免污染测试数据。

@WithMockUser Spring Security 提供的,用来模拟一个真实用户,并且可以赋予权限。

1
2
3
4
5
6
    @Test
    @Transactional
    @WithMockUser(username = "user-id-18163138155", authorities = "ROLE_TEACHER")
    void should_import_student_success() throws Exception {
        ......
    }

Spring 事务详解

什么是事务?

事务是逻辑上的一组操作,要么都执行,要么都不执行。

相信大家应该都能背上面这句话了,下面我结合我们日常的真实开发来谈一谈。

我们系统的每个业务方法可能包括了多个原子性的数据库操作,比如下面的 savePerson() 方法中就有两个原子性的数据库操作。这些原子性的数据库操作是有依赖的,它们要么都执行,要不就都不执行。

1
2
3
4
	public void savePerson() {
		personDao.save(person);
		personDetailDao.save(personDetail);
	}

另外,需要格外注意的是:事务能否生效数据库引擎是否支持事务是关键。比如常用的 MySQL 数据库默认使用支持事务的 innodb引擎。但是,如果把数据库引擎变为 myisam,那么程序也就不再支持事务了!

事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账 1000 元,这个转账会涉及到两个关键操作就是:

  1. 将小明的余额减少 1000 元。
  2. 将小红的余额增加 1000 元。

万一在这两个操作之间突然出现错误比如银行系统崩溃或者网络故障,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
public class OrdersService {
    private AccountDao accountDao;

    public void setOrdersDao(AccountDao accountDao) {
        this.accountDao = accountDao;
    }

    @Transactional(propagation = Propagation.REQUIRED,
                   isolation = Isolation.DEFAULT, readOnly = false, timeout = -1)
    public void accountMoney() {
        //小红账户多1000
        accountDao.addMoney(1000,xiaohong);
        //模拟突然出现的异常,比如银行中可能为突然停电等等
        //如果没有配置事务管理的话会造成,小红账户多了1000而小明账户没有少钱
        int i = 10 / 0;
        //小王账户少1000
        accountDao.reduceMoney(1000,xiaoming);
    }
}

事务的特性(ACID)了解么?

  1. 原子性Atomicity):事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  2. 一致性Consistency):执行事务前后,数据保持一致,例如转账业务中,无论事务是否成功,转账者和收款人的总额应该是不变的;
  3. 隔离性Isolation):并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  4. 持久性Durability):一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

只有保证了事务的持久性、原子性、隔离性之后,一致性才能得到保障。也就是说 A、I、D 是手段,C 是目的!

详谈 Spring 对事务的支持

⚠️ 再提醒一次:你的程序是否支持事务首先取决于数据库 ,比如使用 MySQL 的话,如果你选择的是 innodb 引擎,那么恭喜你,是可以支持事务的。但是,如果你的 MySQL 数据库使用的是 myisam 引擎的话,那不好意思,从根上就是不支持事务的。

这里再多提一下一个非常重要的知识点:MySQL 怎么保证原子性的?

我们知道如果想要保证事务的原子性,就需要在异常发生时,对已经执行的操作进行回滚,在 MySQL 中,恢复机制是通过 回滚日志(undo log) 实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后再执行相关的操作。如果执行过程中遇到异常的话,我们直接利用 回滚日志 中的信息将数据回滚到修改之前的样子即可!并且,回滚日志会先于数据持久化到磁盘上。这样就保证了即使遇到数据库突然宕机等情况,当用户再次启动数据库的时候,数据库还能够通过查询回滚日志来回滚之前未完成的事务。

Spring 支持两种方式的事务管理,编程式事务和声明式事务。

编程式事务管理

通过 TransactionTemplate或者TransactionManager手动管理事务,实际应用中很少使用,但是对于你理解 Spring 事务管理原理有帮助。

使用TransactionTemplate 进行编程式事务管理的示例代码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
@Autowired
private TransactionTemplate transactionTemplate;
public void testTransaction() {

    transactionTemplate.execute(new TransactionCallbackWithoutResult() {
        @Override
        protected void doInTransactionWithoutResult(TransactionStatus transactionStatus) {

            try {

                // ....  业务代码
            } catch (Exception e){
                //回滚
                transactionStatus.setRollbackOnly();
            }

        }
    });
}

使用 TransactionManager 进行编程式事务管理的示例代码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
@Autowired
private PlatformTransactionManager transactionManager;

public void testTransaction() {

    TransactionStatus status = transactionManager.getTransaction(new DefaultTransactionDefinition());
    try {
        // ....  业务代码
        transactionManager.commit(status);
    } catch (Exception e) {
        transactionManager.rollback(status);
    }
}

声明式事务管理

推荐使用(代码侵入性最小),实际是通过 AOP 实现(基于@Transactional 的全注解方式使用最多)。

使用 @Transactional注解进行事务管理的示例代码如下:

1
2
3
4
5
6
7
8
@Transactional(propagation = Propagation.REQUIRED)
public void aMethod {
    //do something
    B b = new B();
    C c = new C();
    b.bMethod();
    c.cMethod();
}

Spring 事务管理接口介绍

Spring 框架中,事务管理相关最重要的 3 个接口如下:

  • PlatformTransactionManager:(平台)事务管理器,Spring 事务策略的核心。
  • TransactionDefinition:事务定义信息(事务隔离级别、传播行为、超时、只读、回滚规则)。
  • TransactionStatus:事务运行状态。

我们可以把 PlatformTransactionManager 接口可以被看作是事务上层的管理者,而 TransactionDefinitionTransactionStatus 这两个接口可以看作是事务的描述。

PlatformTransactionManager 会根据 TransactionDefinition 的定义比如事务超时时间、隔离级别、传播行为等来进行事务管理 ,而 TransactionStatus 接口则提供了一些方法来获取事务相应的状态比如是否新事务、是否可以回滚等等。

PlatformTransactionManager:事务管理接口

Spring 并不直接管理事务,而是提供了多种事务管理器 。Spring 事务管理器的接口是:PlatformTransactionManager

通过这个接口,Spring 为各个平台如:JDBC(DataSourceTransactionManager)、Hibernate(HibernateTransactionManager)、JPA(JpaTransactionManager)等都提供了对应的事务管理器,但是具体的实现就是各个平台自己的事情了。

PlatformTransactionManager 接口的具体实现如下:

PlatformTransactionManager接口中定义了三个方法:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
package org.springframework.transaction;

import org.springframework.lang.Nullable;

public interface PlatformTransactionManager {
    //获得事务
    TransactionStatus getTransaction(@Nullable TransactionDefinition var1) throws TransactionException;
    //提交事务
    void commit(TransactionStatus var1) throws TransactionException;
    //回滚事务
    void rollback(TransactionStatus var1) throws TransactionException;
}

这里多插一嘴。为什么要定义或者说抽象出来PlatformTransactionManager这个接口呢?

主要是因为要将事务管理行为抽象出来,然后不同的平台去实现它,这样我们可以保证提供给外部的行为不变,方便我们扩展。

TransactionDefinition:事务属性

事务管理器接口 PlatformTransactionManager 通过 getTransaction(TransactionDefinition definition) 方法来得到一个事务,这个方法里面的参数是 TransactionDefinition 类 ,这个类就定义了一些基本的事务属性。

什么是事务属性呢? 事务属性可以理解成事务的一些基本配置,描述了事务策略如何应用到方法上。

事务属性包含了 5 个方面:

  • 隔离级别
  • 传播行为
  • 回滚规则
  • 是否只读
  • 事务超时

TransactionDefinition 接口中定义了 5 个方法以及一些表示事务属性的常量比如隔离级别、传播行为等等。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
package org.springframework.transaction;

import org.springframework.lang.Nullable;

public interface TransactionDefinition {
    int PROPAGATION_REQUIRED = 0;
    int PROPAGATION_SUPPORTS = 1;
    int PROPAGATION_MANDATORY = 2;
    int PROPAGATION_REQUIRES_NEW = 3;
    int PROPAGATION_NOT_SUPPORTED = 4;
    int PROPAGATION_NEVER = 5;
    int PROPAGATION_NESTED = 6;
    int ISOLATION_DEFAULT = -1;
    int ISOLATION_READ_UNCOMMITTED = 1;
    int ISOLATION_READ_COMMITTED = 2;
    int ISOLATION_REPEATABLE_READ = 4;
    int ISOLATION_SERIALIZABLE = 8;
    int TIMEOUT_DEFAULT = -1;
    // 返回事务的传播行为,默认值为 REQUIRED。
    int getPropagationBehavior();
    //返回事务的隔离级别,默认值是 DEFAULT
    int getIsolationLevel();
    // 返回事务的超时时间,默认值为-1。如果超过该时间限制但事务还没有完成,则自动回滚事务。
    int getTimeout();
    // 返回是否为只读事务,默认值为 false
    boolean isReadOnly();

    @Nullable
    String getName();
}

TransactionStatus:事务状态

TransactionStatus接口用来记录事务的状态 该接口定义了一组方法,用来获取或判断事务的相应状态信息。

PlatformTransactionManager.getTransaction(…)方法返回一个 TransactionStatus 对象。

TransactionStatus 接口内容如下:

1
2
3
4
5
6
7
public interface TransactionStatus{
    boolean isNewTransaction(); // 是否是新的事务
    boolean hasSavepoint(); // 是否有恢复点
    void setRollbackOnly();  // 设置为只回滚
    boolean isRollbackOnly(); // 是否为只回滚
    boolean isCompleted; // 是否已完成
}

事务属性详解

实际业务开发中,大家一般都是使用 @Transactional 注解来开启事务,很多人并不清楚这个参数里面的参数是什么意思,有什么用。为了更好的在项目中使用事务管理,强烈推荐好好阅读一下下面的内容。

事务传播行为

事务传播行为是为了解决业务层方法之间互相调用的事务问题

当事务方法被另一个事务方法调用时,必须指定事务应该如何传播。例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己的事务中运行。

举个例子:我们在 A 类的aMethod()方法中调用了 B 类的 bMethod() 方法。这个时候就涉及到业务层方法之间互相调用的事务问题。如果我们的 bMethod()如果发生异常需要回滚,如何配置事务传播行为才能让 aMethod()也跟着回滚呢?这个时候就需要事务传播行为的知识了,如果你不知道的话一定要好好看一下。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
@Service
Class A {
    @Autowired
    B b;
    @Transactional(propagation = Propagation.xxx)
    public void aMethod {
        //do something
        b.bMethod();
    }
}

@Service
Class B {
    @Transactional(propagation = Propagation.xxx)
    public void bMethod {
       //do something
    }
}

TransactionDefinition定义中包括了如下几个表示传播行为的常量:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
public interface TransactionDefinition {
    int PROPAGATION_REQUIRED = 0;
    int PROPAGATION_SUPPORTS = 1;
    int PROPAGATION_MANDATORY = 2;
    int PROPAGATION_REQUIRES_NEW = 3;
    int PROPAGATION_NOT_SUPPORTED = 4;
    int PROPAGATION_NEVER = 5;
    int PROPAGATION_NESTED = 6;
    ......
}

不过,为了方便使用,Spring 相应地定义了一个枚举类:Propagation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package org.springframework.transaction.annotation;

import org.springframework.transaction.TransactionDefinition;

public enum Propagation {

    REQUIRED(TransactionDefinition.PROPAGATION_REQUIRED),

    SUPPORTS(TransactionDefinition.PROPAGATION_SUPPORTS),

    MANDATORY(TransactionDefinition.PROPAGATION_MANDATORY),

    REQUIRES_NEW(TransactionDefinition.PROPAGATION_REQUIRES_NEW),

    NOT_SUPPORTED(TransactionDefinition.PROPAGATION_NOT_SUPPORTED),

    NEVER(TransactionDefinition.PROPAGATION_NEVER),

    NESTED(TransactionDefinition.PROPAGATION_NESTED);

    private final int value;

    Propagation(int value) {
        this.value = value;
    }

    public int value() {
        return this.value;
    }

}

正确的事务传播行为可能的值如下

1.TransactionDefinition.PROPAGATION_REQUIRED

使用的最多的一个事务传播行为,我们平时经常使用的@Transactional注解默认使用就是这个事务传播行为。如果当前存在事务,则加入该事务;如果当前没有事务,则创建一个新的事务。也就是说:

  • 如果外部方法没有开启事务的话,Propagation.REQUIRED修饰的内部方法会新开启自己的事务,且开启的事务相互独立,互不干扰。
  • 如果外部方法开启事务并且被Propagation.REQUIRED的话,所有Propagation.REQUIRED修饰的内部方法和外部方法均属于同一事务 ,只要一个方法回滚,整个事务均回滚。

举个例子:如果我们上面的aMethod()bMethod()使用的都是PROPAGATION_REQUIRED传播行为的话,两者使用的就是同一个事务,只要其中一个方法回滚,整个事务均回滚。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
@Service
Class A {
    @Autowired
    B b;
    @Transactional(propagation = Propagation.REQUIRED)
    public void aMethod {
        //do something
        b.bMethod();
    }
}
@Service
Class B {
    @Transactional(propagation = Propagation.REQUIRED)
    public void bMethod {
       //do something
    }
}

2.TransactionDefinition.PROPAGATION_REQUIRES_NEW

创建一个新的事务,如果当前存在事务,则把当前事务挂起。也就是说不管外部方法是否开启事务,Propagation.REQUIRES_NEW修饰的内部方法会新开启自己的事务,且开启的事务相互独立,互不干扰。

举个例子:如果我们上面的bMethod()使用PROPAGATION_REQUIRES_NEW事务传播行为修饰,aMethod还是用PROPAGATION_REQUIRED修饰的话。如果aMethod()发生异常回滚,bMethod()不会跟着回滚,因为 bMethod()开启了独立的事务。但是,如果 bMethod()抛出了未被捕获的异常并且这个异常满足事务回滚规则的话,aMethod()同样也会回滚,因为这个异常被 aMethod()的事务管理机制检测到了。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
@Service
Class A {
    @Autowired
    B b;
    @Transactional(propagation = Propagation.REQUIRED)
    public void aMethod {
        //do something
        b.bMethod();
    }
}

@Service
Class B {
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void bMethod {
       //do something
    }
}

3.TransactionDefinition.PROPAGATION_NESTED:

如果当前存在事务,就在嵌套事务内执行;如果当前没有事务,就执行与TransactionDefinition.PROPAGATION_REQUIRED类似的操作。也就是说:

  • 在外部方法开启事务的情况下,在内部开启一个新的事务,作为嵌套事务存在。
  • 如果外部方法无事务,则单独开启一个事务,与 PROPAGATION_REQUIRED 类似。

这里还是简单举个例子:如果 bMethod() 回滚的话,aMethod()不会回滚。如果 aMethod() 回滚的话,bMethod()会回滚。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
@Service
Class A {
    @Autowired
    B b;
    @Transactional(propagation = Propagation.REQUIRED)
    public void aMethod {
        //do something
        b.bMethod();
    }
}

@Service
Class B {
    @Transactional(propagation = Propagation.NESTED)
    public void bMethod {
        //do something
    }
}

4.TransactionDefinition.PROPAGATION_MANDATORY

如果当前存在事务,则加入该事务;如果当前没有事务,则抛出异常。(mandatory:强制性)

这个使用的很少,就不举例子来说了。

若是错误的配置以下 3 种事务传播行为,事务将不会发生回滚,这里不对照案例讲解了,使用的很少。

  • TransactionDefinition.PROPAGATION_SUPPORTS: 如果当前存在事务,则加入该事务;如果当前没有事务,则以非事务的方式继续运行。
  • TransactionDefinition.PROPAGATION_NOT_SUPPORTED: 以非事务方式运行,如果当前存在事务,则把当前事务挂起。
  • TransactionDefinition.PROPAGATION_NEVER: 以非事务方式运行,如果当前存在事务,则抛出异常。

事务隔离级别

TransactionDefinition 接口中定义了五个表示隔离级别的常量:

1
2
3
4
5
6
7
8
9
public interface TransactionDefinition {
    ......
    int ISOLATION_DEFAULT = -1;
    int ISOLATION_READ_UNCOMMITTED = 1;
    int ISOLATION_READ_COMMITTED = 2;
    int ISOLATION_REPEATABLE_READ = 4;
    int ISOLATION_SERIALIZABLE = 8;
    ......
}

和事务传播行为那块一样,为了方便使用,Spring 也相应地定义了一个枚举类:Isolation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public enum Isolation {

  DEFAULT(TransactionDefinition.ISOLATION_DEFAULT),

  READ_UNCOMMITTED(TransactionDefinition.ISOLATION_READ_UNCOMMITTED),

  READ_COMMITTED(TransactionDefinition.ISOLATION_READ_COMMITTED),

  REPEATABLE_READ(TransactionDefinition.ISOLATION_REPEATABLE_READ),

  SERIALIZABLE(TransactionDefinition.ISOLATION_SERIALIZABLE);

  private final int value;

  Isolation(int value) {
    this.value = value;
  }

  public int value() {
    return this.value;
  }

}

下面我依次对每一种事务隔离级别进行介绍:

  • TransactionDefinition.ISOLATION_DEFAULT :使用后端数据库默认的隔离级别,MySQL 默认采用的 REPEATABLE_READ 隔离级别 Oracle 默认采用的 READ_COMMITTED 隔离级别.
  • TransactionDefinition.ISOLATION_READ_UNCOMMITTED :最低的隔离级别,使用这个隔离级别很少,因为它允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
  • TransactionDefinition.ISOLATION_READ_COMMITTED : 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
  • TransactionDefinition.ISOLATION_REPEATABLE_READ : 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
  • TransactionDefinition.ISOLATION_SERIALIZABLE : 最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。但是这将严重影响程序的性能。通常情况下也不会用到该级别。

事务超时属性

所谓事务超时,就是指一个事务所允许执行的最长时间,如果超过该时间限制但事务还没有完成,则自动回滚事务。在 TransactionDefinition 中以 int 的值来表示超时时间,其单位是秒,默认值为-1,这表示事务的超时时间取决于底层事务系统或者没有超时时间。

事务只读属性

1
2
3
4
5
6
7
8
9
package org.springframework.transaction;

import org.springframework.lang.Nullable;

public interface TransactionDefinition {
    // ......
    // 返回是否为只读事务,默认值为 false
    boolean isReadOnly();
}

对于只有读取数据查询的事务,可以指定事务类型为 readonly,即只读事务。只读事务不涉及数据的修改,数据库会提供一些优化手段,适合用在有多条数据库查询操作的方法中。

很多人就会疑问了,为什么我一个数据查询操作还要启用事务支持呢?

拿 MySQL 的 innodb 举例子,根据官网 https://dev.mysql.com/doc/refman/5.7/en/innodb-autocommit-commit-rollback.html 描述:

MySQL 默认对每一个新建立的连接都启用了autocommit模式。在该模式下,每一个发送到 MySQL 服务器的sql语句都会在一个单独的事务中进行处理,执行结束后会自动提交事务,并开启一个新的事务。

但是,如果你给方法加上了Transactional注解的话,这个方法执行的所有sql会被放在一个事务中。如果声明了只读事务的话,数据库就会去优化它的执行,并不会带来其他的什么收益。

如果不加Transactional,每条sql会开启一个单独的事务,中间被其它事务改了数据,都会实时读取到最新值。

分享一下关于事务只读属性,其他人的解答:

  • 如果你一次执行单条查询语句,则没有必要启用事务支持,数据库默认支持 SQL 执行期间的读一致性;
  • 如果你一次执行多条查询语句,例如统计查询,报表查询,在这种场景下,多条查询 SQL 必须保证整体的读一致性,否则,在前条 SQL 查询之后,后条 SQL 查询之前,数据被其他用户改变,则该次整体的统计查询将会出现读数据不一致的状态,此时,应该启用事务支持

事务回滚规则

这些规则定义了哪些异常会导致事务回滚而哪些不会。默认情况下,事务只有遇到运行期异常(RuntimeException 的子类)时才会回滚,Error 也会导致事务回滚,但是,在遇到检查型(Checked)异常时不会回滚。

如果你想要回滚你定义的特定的异常类型的话,可以这样:

1
@Transactional(rollbackFor= MyException.class)

@Transactional 注解使用详解

@Transactional 的作用范围

  1. 方法:推荐将注解使用于方法上,不过需要注意的是:该注解只能应用到 public 方法上,否则不生效。
  2. :如果这个注解使用在类上的话,表明该注解对该类中所有的 public 方法都生效。
  3. 接口:不推荐在接口上使用。

@Transactional 的常用配置参数

@Transactional注解源码如下,里面包含了基本事务属性的配置:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
@Documented
public @interface Transactional {

	@AliasFor("transactionManager")
	String value() default "";

	@AliasFor("value")
	String transactionManager() default "";

	Propagation propagation() default Propagation.REQUIRED;

	Isolation isolation() default Isolation.DEFAULT;

	int timeout() default TransactionDefinition.TIMEOUT_DEFAULT;

	boolean readOnly() default false;

	Class<? extends Throwable>[] rollbackFor() default {};

	String[] rollbackForClassName() default {};

	Class<? extends Throwable>[] noRollbackFor() default {};

	String[] noRollbackForClassName() default {};

}

@Transactional 的常用配置参数总结(只列出了 5 个我平时比较常用的):

属性名 说明
propagation 事务的传播行为,默认值为 REQUIRED,可选的值在上面介绍过
isolation 事务的隔离级别,默认值采用 DEFAULT,可选的值在上面介绍过
timeout 事务的超时时间,默认值为-1(不会超时)。如果超过该时间限制但事务还没有完成,则自动回滚事务。
readOnly 指定事务是否为只读事务,默认值为 false。
rollbackFor 用于指定能够触发事务回滚的异常类型,并且可以指定多个异常类型。

# @Transactional 事务注解原理

面试中在问 AOP 的时候可能会被问到的一个问题。简单说下吧!

我们知道,@Transactional 的工作机制是基于 AOP 实现的,AOP 又是使用动态代理实现的。如果目标对象实现了接口,默认情况下会采用 JDK 的动态代理,如果目标对象没有实现了接口,会使用 CGLIB 动态代理。

🤐 多提一嘴:createAopProxy() 方法 决定了是使用 JDK 还是 Cglib 来做动态代理,源码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
public class DefaultAopProxyFactory implements AopProxyFactory, Serializable {

	@Override
	public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException {
		if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) {
			Class<?> targetClass = config.getTargetClass();
			if (targetClass == null) {
				throw new AopConfigException("TargetSource cannot determine target class: " +
						"Either an interface or a target is required for proxy creation.");
			}
			if (targetClass.isInterface() || Proxy.isProxyClass(targetClass)) {
				return new JdkDynamicAopProxy(config);
			}
			return new ObjenesisCglibAopProxy(config);
		}
		else {
			return new JdkDynamicAopProxy(config);
		}
	}
  .......
}

如果一个类或者一个类中的 public 方法上被标注@Transactional 注解的话,Spring 容器就会在启动的时候为其创建一个代理类,在调用被@Transactional 注解的 public 方法的时候,实际调用的是,TransactionInterceptor 类中的 invoke()方法。这个方法的作用就是在目标方法之前开启事务,方法执行过程中如果遇到异常的时候回滚事务,方法调用完成之后提交事务。

TransactionInterceptor 类中的 invoke()方法内部实际调用的是 TransactionAspectSupport 类的 invokeWithinTransaction()方法。由于新版本的 Spring 对这部分重写很大,而且用到了很多响应式编程的知识,这里就不列源码了。

Spring AOP 自调用问题

当一个方法被标记了@Transactional 注解的时候,Spring 事务管理器只会在被其他类方法调用的时候生效,而不会在一个类中方法调用生效。

这是因为 Spring AOP 工作原理决定的。因为 Spring AOP 使用动态代理来实现事务的管理,它会在运行的时候为带有 @Transactional 注解的方法生成代理对象,并在方法调用的前后应用事物逻辑。如果该方法被其他类调用我们的代理对象就会拦截方法调用并处理事务。但是在一个类中的其他方法内部调用的时候,我们代理对象就无法拦截到这个内部调用,因此事务也就失效了。

MyService 类中的method1()调用method2()就会导致method2()的事务失效。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@Service
public class MyService {

private void method1() {
     method2();
     //......
}
@Transactional
 public void method2() {
     //......
  }
}

解决办法就是避免同一类中自调用或者使用 AspectJ 取代 Spring AOP 代理。

@Transactional 的使用注意事项总结

  • @Transactional 注解只有作用到 public 方法上事务才生效,不推荐在接口上使用;
  • 避免同一个类中调用 @Transactional 注解的方法,这样会导致事务失效;
  • 正确的设置 @TransactionalrollbackForpropagation 属性,否则事务可能会回滚失败;
  • @Transactional 注解的方法所在的类必须被 Spring 管理,否则不生效;
  • 底层使用的数据库必须支持事务机制,否则不生效;

Spring 中的设计模式

控制反转(IoC)和依赖注入(DI)

IoC(Inversion of Control,控制反转) 是 Spring 中一个非常非常重要的概念,它不是什么技术,而是一种解耦的设计思想。IoC 的主要目的是借助于“第三方”(Spring 中的 IoC 容器) 实现具有依赖关系的对象之间的解耦(IOC 容器管理对象,你只管使用即可),从而降低代码之间的耦合度。

IoC 是一个原则,而不是一个模式,以下模式(但不限于)实现了 IoC 原则。

Spring IoC 容器就像是一个工厂一样,当我们需要创建一个对象的时候,只需要配置好配置文件/注解即可,完全不用考虑对象是如何被创建出来的。 IoC 容器负责创建对象,将对象连接在一起,配置这些对象,并从创建中处理这些对象的整个生命周期,直到它们被完全销毁。

在实际项目中一个 Service 类如果有几百甚至上千个类作为它的底层,我们需要实例化这个 Service,你可能要每次都要搞清这个 Service 所有底层类的构造函数,这可能会把人逼疯。如果利用 IOC 的话,你只需要配置好,然后在需要的地方引用就行了,这大大增加了项目的可维护性且降低了开发难度。

关于 Spring IOC 的理解,推荐看这一下知乎的一个回答:https://www.zhihu.com/question/23277575/answer/169698662 ,非常不错。

控制反转怎么理解呢? 举个例子:“对象 a 依赖了对象 b,当对象 a 需要使用 对象 b 的时候必须自己去创建。但是当系统引入了 IOC 容器后, 对象 a 和对象 b 之间就失去了直接的联系。这个时候,当对象 a 需要使用 对象 b 的时候, 我们可以指定 IOC 容器去创建一个对象 b 注入到对象 a 中”。 对象 a 获得依赖对象 b 的过程,由主动行为变为了被动行为,控制权反转,这就是控制反转名字的由来。

DI(Dependency Inject,依赖注入)是实现控制反转的一种设计模式,依赖注入就是将实例变量传入到一个对象中去。

工厂设计模式

Spring 使用工厂模式可以通过 BeanFactoryApplicationContext 创建 bean 对象。

两者对比:

  • BeanFactory:延迟注入(使用到某个 bean 的时候才会注入),相比于ApplicationContext 来说会占用更少的内存,程序启动速度更快。
  • ApplicationContext:容器启动的时候,不管你用没用到,一次性创建所有 bean 。BeanFactory 仅提供了最基本的依赖注入支持,ApplicationContext 扩展了 BeanFactory ,除了有BeanFactory的功能还有额外更多功能,所以一般开发人员使用ApplicationContext会更多。

ApplicationContext 的三个实现类:

  1. ClassPathXmlApplication:把上下文文件当成类路径资源。
  2. FileSystemXmlApplication:从文件系统中的 XML 文件载入上下文定义信息。
  3. XmlWebApplicationContext:从 Web 系统中的 XML 文件载入上下文定义信息。

Example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.FileSystemXmlApplicationContext;

public class App {
	public static void main(String[] args) {
		ApplicationContext context = new FileSystemXmlApplicationContext(
				"C:/work/IOC Containers/springframework.applicationcontext/src/main/resources/bean-factory-config.xml");

		HelloApplicationContext obj = (HelloApplicationContext) context.getBean("helloApplicationContext");
		obj.getMsg();
	}
}

单例设计模式

在我们的系统中,有一些对象其实我们只需要一个,比如说:线程池、缓存、对话框、注册表、日志对象、充当打印机、显卡等设备驱动程序的对象。事实上,这一类对象只能有一个实例,如果制造出多个实例就可能会导致一些问题的产生,比如:程序的行为异常、资源使用过量、或者不一致性的结果。

使用单例模式的好处 :

  • 对于频繁使用的对象,可以省略创建对象所花费的时间,这对于那些重量级对象而言,是非常可观的一笔系统开销;
  • 由于 new 操作的次数减少,因而对系统内存的使用频率也会降低,这将减轻 GC 压力,缩短 GC 停顿时间。

Spring 中 bean 的默认作用域就是 singleton(单例)的。 除了 singleton 作用域,Spring 中 bean 还有下面几种作用域:

  • prototype : 每次获取都会创建一个新的 bean 实例。也就是说,连续 getBean() 两次,得到的是不同的 Bean 实例。
  • request (仅 Web 应用可用): 每一次 HTTP 请求都会产生一个新的 bean(请求 bean),该 bean 仅在当前 HTTP request 内有效。
  • session (仅 Web 应用可用) : 每一次来自新 session 的 HTTP 请求都会产生一个新的 bean(会话 bean),该 bean 仅在当前 HTTP session 内有效。
  • application/global-session (仅 Web 应用可用):每个 Web 应用在启动时创建一个 Bean(应用 Bean),,该 bean 仅在当前应用启动时间内有效。
  • websocket (仅 Web 应用可用):每一次 WebSocket 会话产生一个新的 bean。

Spring 通过 ConcurrentHashMap 实现单例注册表的特殊方式实现单例模式。

Spring 实现单例的核心代码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// 通过 ConcurrentHashMap(线程安全) 实现单例注册表
private final Map<String, Object> singletonObjects = new ConcurrentHashMap<String, Object>(64);

public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
        Assert.notNull(beanName, "'beanName' must not be null");
        synchronized (this.singletonObjects) {
            // 检查缓存中是否存在实例
            Object singletonObject = this.singletonObjects.get(beanName);
            if (singletonObject == null) {
                //...省略了很多代码
                try {
                    singletonObject = singletonFactory.getObject();
                }
                //...省略了很多代码
                // 如果实例对象在不存在,我们注册到单例注册表中。
                addSingleton(beanName, singletonObject);
            }
            return (singletonObject != NULL_OBJECT ? singletonObject : null);
        }
    }
    //将对象添加到单例注册表
    protected void addSingleton(String beanName, Object singletonObject) {
            synchronized (this.singletonObjects) {
                this.singletonObjects.put(beanName, (singletonObject != null ? singletonObject : NULL_OBJECT));

            }
        }
}

单例 Bean 存在线程安全问题吗?

大部分时候我们并没有在项目中使用多线程,所以很少有人会关注这个问题。单例 Bean 存在线程问题,主要是因为当多个线程操作同一个对象的时候是存在资源竞争的。

常见的有两种解决办法:

  1. 在 Bean 中尽量避免定义可变的成员变量。
  2. 在类中定义一个 ThreadLocal 成员变量,将需要的可变成员变量保存在 ThreadLocal 中(推荐的一种方式)。

不过,大部分 Bean 实际都是无状态(没有实例变量)的(比如 Dao、Service),这种情况下, Bean 是线程安全的。

代理设计模式

代理模式在 AOP 中的应用

AOP(Aspect-Oriented Programming,面向切面编程) 能够将那些与业务无关,却为业务模块所共同调用的逻辑或责任(例如事务处理、日志管理、权限控制等)封装起来,便于减少系统的重复代码,降低模块间的耦合度,并有利于未来的可拓展性和可维护性。

Spring AOP 就是基于动态代理的,如果要代理的对象,实现了某个接口,那么 Spring AOP 会使用 JDK Proxy 去创建代理对象,而对于没有实现接口的对象,就无法使用 JDK Proxy 去进行代理了,这时候 Spring AOP 会使用 Cglib 生成一个被代理对象的子类来作为代理,如下图所示:

当然,你也可以使用 AspectJ ,Spring AOP 已经集成了 AspectJ ,AspectJ 应该算的上是 Java 生态系统中最完整的 AOP 框架了。

使用 AOP 之后我们可以把一些通用功能抽象出来,在需要用到的地方直接使用即可,这样大大简化了代码量。我们需要增加新功能时也方便,这样也提高了系统扩展性。日志功能、事务管理等等场景都用到了 AOP 。

Spring AOP 和 AspectJ AOP 有什么区别?

Spring AOP 属于运行时增强,而 AspectJ 是编译时增强。 Spring AOP 基于代理(Proxying),而 AspectJ 基于字节码操作(Bytecode Manipulation)。

Spring AOP 已经集成了 AspectJ ,AspectJ 应该算的上是 Java 生态系统中最完整的 AOP 框架了。AspectJ 相比于 Spring AOP 功能更加强大,但是 Spring AOP 相对来说更简单,

如果我们的切面比较少,那么两者性能差异不大。但是,当切面太多的话,最好选择 AspectJ ,它比 Spring AOP 快很多。

模板方法

模板方法模式是一种行为设计模式,它定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。 模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤的实现方式。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public abstract class Template {
    //这是我们的模板方法
    public final void TemplateMethod(){
        PrimitiveOperation1();
        PrimitiveOperation2();
        PrimitiveOperation3();
    }

    protected void  PrimitiveOperation1(){
        //当前类实现
    }

    //被子类实现的方法
    protected abstract void PrimitiveOperation2();
    protected abstract void PrimitiveOperation3();

}
public class TemplateImpl extends Template {

    @Override
    public void PrimitiveOperation2() {
        //当前类实现
    }

    @Override
    public void PrimitiveOperation3() {
        //当前类实现
    }
}

Spring 中 JdbcTemplateHibernateTemplate 等以 Template 结尾的对数据库操作的类,它们就使用到了模板模式。一般情况下,我们都是使用继承的方式来实现模板模式,但是 Spring 并没有使用这种方式,而是使用 Callback 模式与模板方法模式配合,既达到了代码复用的效果,同时增加了灵活性。

观察者模式

观察者模式是一种对象行为型模式。它表示的是一种对象与对象之间具有依赖关系,当一个对象发生改变的时候,依赖这个对象的所有对象也会做出反应。Spring 事件驱动模型就是观察者模式很经典的一个应用。Spring 事件驱动模型非常有用,在很多场景都可以解耦我们的代码。比如我们每次添加商品的时候都需要重新更新商品索引,这个时候就可以利用观察者模式来解决这个问题。

Spring 事件驱动模型中的三种角色

事件角色

ApplicationEvent (org.springframework.context包下)充当事件的角色,这是一个抽象类,它继承了java.util.EventObject并实现了 java.io.Serializable接口。

Spring 中默认存在以下事件,他们都是对 ApplicationContextEvent 的实现(继承自ApplicationContextEvent):

  • ContextStartedEventApplicationContext 启动后触发的事件;
  • ContextStoppedEventApplicationContext 停止后触发的事件;
  • ContextRefreshedEventApplicationContext 初始化或刷新完成后触发的事件;
  • ContextClosedEventApplicationContext 关闭后触发的事件。

事件监听者角色

ApplicationListener 充当了事件监听者角色,它是一个接口,里面只定义了一个 onApplicationEvent()方法来处理ApplicationEventApplicationListener接口类源码如下,可以看出接口定义看出接口中的事件只要实现了 ApplicationEvent就可以了。所以,在 Spring 中我们只要实现 ApplicationListener 接口的 onApplicationEvent() 方法即可完成监听事件

1
2
3
4
5
6
package org.springframework.context;
import java.util.EventListener;
@FunctionalInterface
public interface ApplicationListener<E extends ApplicationEvent> extends EventListener {
    void onApplicationEvent(E var1);
}

事件发布者角色

ApplicationEventPublisher 充当了事件的发布者,它也是一个接口。

1
2
3
4
5
6
7
8
@FunctionalInterface
public interface ApplicationEventPublisher {
    default void publishEvent(ApplicationEvent event) {
        this.publishEvent((Object)event);
    }

    void publishEvent(Object var1);
}

ApplicationEventPublisher 接口的publishEvent()这个方法在AbstractApplicationContext类中被实现,阅读这个方法的实现,你会发现实际上事件真正是通过ApplicationEventMulticaster来广播出去的。具体内容过多,就不在这里分析了,后面可能会单独写一篇文章提到。

Spring 的事件流程总结

  1. 定义一个事件: 实现一个继承自 ApplicationEvent,并且写相应的构造函数;
  2. 定义一个事件监听者:实现 ApplicationListener 接口,重写 onApplicationEvent() 方法;
  3. 使用事件发布者发布消息: 可以通过 ApplicationEventPublisherpublishEvent() 方法发布消息。

Example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// 定义一个事件,继承自ApplicationEvent并且写相应的构造函数
public class DemoEvent extends ApplicationEvent{
    private static final long serialVersionUID = 1L;

    private String message;

    public DemoEvent(Object source,String message){
        super(source);
        this.message = message;
    }

    public String getMessage() {
        return message;
    }


    // 定义一个事件监听者,实现ApplicationListener接口,重写 onApplicationEvent() 方法;
    @Component
    public class DemoListener implements ApplicationListener<DemoEvent>{

        //使用onApplicationEvent接收消息
        @Override
        public void onApplicationEvent(DemoEvent event) {
            String msg = event.getMessage();
            System.out.println("接收到的信息是:"+msg);
        }

    }
    // 发布事件,可以通过ApplicationEventPublisher  的 publishEvent() 方法发布消息。
    @Component
    public class DemoPublisher {

        @Autowired
        ApplicationContext applicationContext;

        public void publish(String message){
            //发布事件
            applicationContext.publishEvent(new DemoEvent(this, message));
        }
    }

当调用 DemoPublisherpublish() 方法的时候,比如 demoPublisher.publish("你好") ,控制台就会打印出:接收到的信息是:你好

适配器模式

适配器模式(Adapter Pattern) 将一个接口转换成客户希望的另一个接口,适配器模式使接口不兼容的那些类可以一起工作。

Spring AOP 中的适配器模式

我们知道 Spring AOP 的实现是基于代理模式,但是 Spring AOP 的增强或通知(Advice)使用到了适配器模式,与之相关的接口是AdvisorAdapter

Advice 常用的类型有:BeforeAdvice(目标方法调用前,前置通知)、AfterAdvice(目标方法调用后,后置通知)、AfterReturningAdvice(目标方法执行结束后,return 之前)等等。每个类型 Advice(通知)都有对应的拦截器:MethodBeforeAdviceInterceptorAfterReturningAdviceInterceptorThrowsAdviceInterceptor 等等。

Spring 预定义的通知要通过对应的适配器,适配成 MethodInterceptor 接口(方法拦截器)类型的对象(如:MethodBeforeAdviceAdapter 通过调用 getInterceptor 方法,将 MethodBeforeAdvice 适配成 MethodBeforeAdviceInterceptor )。

Spring MVC 中的适配器模式

在 Spring MVC 中,DispatcherServlet 根据请求信息调用 HandlerMapping,解析请求对应的 Handler。解析到对应的 Handler(也就是我们平常说的 Controller 控制器)后,开始由HandlerAdapter 适配器处理。HandlerAdapter 作为期望接口,具体的适配器实现类用于对目标类进行适配,Controller 作为需要适配的类。

为什么要在 Spring MVC 中使用适配器模式?

Spring MVC 中的 Controller 种类众多,不同类型的 Controller 通过不同的方法来对请求进行处理。如果不利用适配器模式的话,DispatcherServlet 直接获取对应类型的 Controller,需要的自行来判断,像下面这段代码一样:

1
2
3
4
5
6
7
if(mappedHandler.getHandler() instanceof MultiActionController){
   ((MultiActionController)mappedHandler.getHandler()).xxx
}else if(mappedHandler.getHandler() instanceof XXX){
    ...
}else if(...){
   ...
}

假如我们再增加一个 Controller类型就要在上面代码中再加入一行 判断语句,这种形式就使得程序难以维护,也违反了设计模式中的开闭原则 – 对扩展开放,对修改关闭。

装饰者模式

装饰者模式可以动态地给对象添加一些额外的属性或行为。相比于使用继承,装饰者模式更加灵活。简单点儿说就是当我们需要修改原有的功能,但我们又不愿直接去修改原有的代码时,设计一个 Decorator 套在原有代码外面。其实在 JDK 中就有很多地方用到了装饰者模式,比如 InputStream家族,InputStream 类下有 FileInputStream (读取文件)、BufferedInputStream (增加缓存,使读取文件速度大大提升)等子类都在不修改InputStream 代码的情况下扩展了它的功能。

Spring 中配置 DataSource 的时候,DataSource 可能是不同的数据库和数据源。我们能否根据客户的需求在少修改原有类的代码下动态切换不同的数据源?这个时候就要用到装饰者模式(这一点我自己还没太理解具体原理)。Spring 中用到的包装器模式在类名上含有 Wrapper或者 Decorator。这些类基本上都是动态地给一个对象添加一些额外的职责。

总结

Spring 框架中用到了哪些设计模式?

  • 工厂设计模式 : Spring 使用工厂模式通过 BeanFactoryApplicationContext 创建 bean 对象。
  • 代理设计模式 : Spring AOP 功能的实现。
  • 单例设计模式 : Spring 中的 Bean 默认都是单例的。
  • 模板方法模式 : Spring 中 jdbcTemplatehibernateTemplate 等以 Template 结尾的对数据库操作的类,它们就使用到了模板模式。
  • 包装器设计模式 : 我们的项目需要连接多个数据库,而且不同的客户在每次访问中根据需要会去访问不同的数据库。这种模式让我们可以根据客户的需求能够动态切换不同的数据源。
  • 观察者模式: Spring 事件驱动模型就是观察者模式很经典的一个应用。
  • 适配器模式 :Spring AOP 的增强或通知(Advice)使用到了适配器模式、spring MVC 中也是用到了适配器模式适配Controller

SpringBoot 自动装配原理

前言

使用过 Spring 的小伙伴,一定有被 XML 配置统治的恐惧。即使 Spring 后面引入了基于注解的配置,我们在开启某些 Spring 特性或者引入第三方依赖的时候,还是需要用 XML 或 Java 进行显式配置。

举个例子。没有 Spring Boot 的时候,我们写一个 RestFul Web 服务,还首先需要进行如下配置。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
@Configuration
public class RESTConfiguration
{
    @Bean
    public View jsonTemplate() {
        MappingJackson2JsonView view = new MappingJackson2JsonView();
        view.setPrettyPrint(true);
        return view;
    }

    @Bean
    public ViewResolver viewResolver() {
        return new BeanNameViewResolver();
    }
}
spring-servlet.xml
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context"
    xmlns:mvc="http://www.springframework.org/schema/mvc"
    xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/context/ http://www.springframework.org/schema/context/spring-context.xsd
    http://www.springframework.org/schema/mvc/ http://www.springframework.org/schema/mvc/spring-mvc.xsd">

    <context:component-scan base-package="com.howtodoinjava.demo" />
    <mvc:annotation-driven />

    <!-- JSON Support -->
    <bean name="viewResolver" class="org.springframework.web.servlet.view.BeanNameViewResolver"/>
    <bean name="jsonTemplate" class="org.springframework.web.servlet.view.json.MappingJackson2JsonView"/>

</beans>

但是,Spring Boot 项目,我们只需要添加相关依赖,无需配置,通过启动下面的 main 方法即可。

1
2
3
4
5
6
@SpringBootApplication
public class DemoApplication {
    public static void main(String[] args) {
        SpringApplication.run(DemoApplication.class, args);
    }
}

并且,我们通过 Spring Boot 的全局配置文件 application.propertiesapplication.yml即可对项目进行设置比如更换端口号,配置 JPA 属性等等。

为什么 Spring Boot 使用起来这么酸爽呢? 这得益于其自动装配。自动装配可以说是 Spring Boot 的核心,那究竟什么是自动装配呢?

什么是 SpringBoot 自动装配?

我们现在提到自动装配的时候,一般会和 Spring Boot 联系在一起。但是,实际上 Spring Framework 早就实现了这个功能。Spring Boot 只是在其基础上,通过 SPI 的方式,做了进一步优化。

SpringBoot 定义了一套接口规范,这套规范规定:SpringBoot 在启动时会扫描外部引用 jar 包中的META-INF/spring.factories文件,将文件中配置的类型信息加载到 Spring 容器(此处涉及到 JVM 类加载机制与 Spring 的容器知识),并执行类中定义的各种操作。对于外部 jar 来说,只需要按照 SpringBoot 定义的标准,就能将自己的功能装置进 SpringBoot。

没有 Spring Boot 的情况下,如果我们需要引入第三方依赖,需要手动配置,非常麻烦。但是,Spring Boot 中,我们直接引入一个 starter 即可。比如你想要在项目中使用 redis 的话,直接在项目中引入对应的 starter 即可。

1
2
3
4
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

引入 starter 之后,我们通过少量注解和一些简单的配置就能使用第三方组件提供的功能了。

在我看来,自动装配可以简单理解为:通过注解或者一些简单的配置就能在 Spring Boot 的帮助下实现某块功能。

SpringBoot 是如何实现自动装配的?

我们先看一下 SpringBoot 的核心注解 SpringBootApplication

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
<1.>@SpringBootConfiguration
<2.>@ComponentScan
<3.>@EnableAutoConfiguration
public @interface SpringBootApplication {

}

@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Configuration //实际上它也是一个配置类
public @interface SpringBootConfiguration {
}

大概可以把 @SpringBootApplication看作是 @Configuration@EnableAutoConfiguration@ComponentScan 注解的集合。根据 SpringBoot 官网,这三个注解的作用分别是:

  • @EnableAutoConfiguration:启用 SpringBoot 的自动配置机制
  • @Configuration:允许在上下文中注册额外的 bean 或导入其他配置类
  • @ComponentScan:扫描被@Component (@Service,@Controller)注解的 bean,注解默认会扫描启动类所在的包下所有的类 ,可以自定义不扫描某些 bean。如下图所示,容器中将排除TypeExcludeFilterAutoConfigurationExcludeFilter

@EnableAutoConfiguration 是实现自动装配的重要注解,我们以这个注解入手。

# @EnableAutoConfiguration:实现自动装配的核心注解

EnableAutoConfiguration 只是一个简单地注解,自动装配核心功能的实现实际是通过 AutoConfigurationImportSelector类。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@AutoConfigurationPackage //作用:将main包下的所有组件注册到容器中
@Import({AutoConfigurationImportSelector.class}) //加载自动装配类 xxxAutoconfiguration
public @interface EnableAutoConfiguration {
    String ENABLED_OVERRIDE_PROPERTY = "spring.boot.enableautoconfiguration";

    Class<?>[] exclude() default {};

    String[] excludeName() default {};
}

我们现在重点分析下AutoConfigurationImportSelector 类到底做了什么?

# AutoConfigurationImportSelector:加载自动装配类

AutoConfigurationImportSelector类的继承体系如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
public class AutoConfigurationImportSelector implements DeferredImportSelector, BeanClassLoaderAware, ResourceLoaderAware, BeanFactoryAware, EnvironmentAware, Ordered {

}

public interface DeferredImportSelector extends ImportSelector {

}

public interface ImportSelector {
    String[] selectImports(AnnotationMetadata var1);
}

可以看出,AutoConfigurationImportSelector 类实现了 ImportSelector接口,也就实现了这个接口中的 selectImports方法,该方法主要用于获取所有符合条件的类的全限定类名,这些类需要被加载到 IoC 容器中

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
private static final String[] NO_IMPORTS = new String[0];

public String[] selectImports(AnnotationMetadata annotationMetadata) {
        // <1>.判断自动装配开关是否打开
        if (!this.isEnabled(annotationMetadata)) {
            return NO_IMPORTS;
        } else {
          //<2>.获取所有需要装配的bean
            AutoConfigurationMetadata autoConfigurationMetadata = AutoConfigurationMetadataLoader.loadMetadata(this.beanClassLoader);
            AutoConfigurationImportSelector.AutoConfigurationEntry autoConfigurationEntry = this.getAutoConfigurationEntry(autoConfigurationMetadata, annotationMetadata);
            return StringUtils.toStringArray(autoConfigurationEntry.getConfigurations());
        }
    }

这里我们需要重点关注一下getAutoConfigurationEntry()方法,这个方法主要负责加载自动配置类的。

该方法调用链如下:

现在我们结合getAutoConfigurationEntry()的源码来详细分析一下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
private static final AutoConfigurationEntry EMPTY_ENTRY = new AutoConfigurationEntry();

AutoConfigurationEntry getAutoConfigurationEntry(AutoConfigurationMetadata autoConfigurationMetadata, AnnotationMetadata annotationMetadata) {
        //<1>.
        if (!this.isEnabled(annotationMetadata)) {
            return EMPTY_ENTRY;
        } else {
            //<2>.
            AnnotationAttributes attributes = this.getAttributes(annotationMetadata);
            //<3>.
            List<String> configurations = this.getCandidateConfigurations(annotationMetadata, attributes);
            //<4>.
            configurations = this.removeDuplicates(configurations);
            Set<String> exclusions = this.getExclusions(annotationMetadata, attributes);
            this.checkExcludedClasses(configurations, exclusions);
            configurations.removeAll(exclusions);
            configurations = this.filter(configurations, autoConfigurationMetadata);
            this.fireAutoConfigurationImportEvents(configurations, exclusions);
            return new AutoConfigurationImportSelector.AutoConfigurationEntry(configurations, exclusions);
        }
    }

第 1 步:

判断自动装配开关是否打开。默认spring.boot.enableautoconfiguration=true,可在 application.propertiesapplication.yml 中设置

第 2 步

用于获取EnableAutoConfiguration注解中的 excludeexcludeName

第 3 步

获取需要自动装配的所有配置类,读取META-INF/spring.factories

1
spring-boot/spring-boot-project/spring-boot-autoconfigure/src/main/resources/META-INF/spring.factories

img

从下图可以看到这个文件的配置内容都被我们读取到了。XXXAutoConfiguration的作用就是按需加载组件。

不光是这个依赖下的META-INF/spring.factories被读取到,所有 Spring Boot Starter 下的META-INF/spring.factories都会被读取到。

所以,你可以清楚滴看到, druid 数据库连接池的 Spring Boot Starter 就创建了META-INF/spring.factories文件。

如果,我们自己要创建一个 Spring Boot Starter,这一步是必不可少的。

第 4 步

到这里可能面试官会问你:“spring.factories中这么多配置,每次启动都要全部加载么?”。

很明显,这是不现实的。我们 debug 到后面你会发现,configurations 的值变小了。

因为,这一步有经历了一遍筛选,@ConditionalOnXXX 中的所有条件都满足,该类才会生效。

1
2
3
4
5
6
7
8
@Configuration
// 检查相关的类:RabbitTemplate 和 Channel是否存在
// 存在才会加载
@ConditionalOnClass({ RabbitTemplate.class, Channel.class })
@EnableConfigurationProperties(RabbitProperties.class)
@Import(RabbitAnnotationDrivenConfiguration.class)
public class RabbitAutoConfiguration {
}

有兴趣的童鞋可以详细了解下 Spring Boot 提供的条件注解

  • @ConditionalOnBean:当容器里有指定 Bean 的条件下
  • @ConditionalOnMissingBean:当容器里没有指定 Bean 的情况下
  • @ConditionalOnSingleCandidate:当指定 Bean 在容器中只有一个,或者虽然有多个但是指定首选 Bean
  • @ConditionalOnClass:当类路径下有指定类的条件下
  • @ConditionalOnMissingClass:当类路径下没有指定类的条件下
  • @ConditionalOnProperty:指定的属性是否有指定的值
  • @ConditionalOnResource:类路径是否有指定的值
  • @ConditionalOnExpression:基于 SpEL 表达式作为判断条件
  • @ConditionalOnJava:基于 Java 版本作为判断条件
  • @ConditionalOnJndi:在 JNDI 存在的条件下差在指定的位置
  • @ConditionalOnNotWebApplication:当前项目不是 Web 项目的条件下
  • @ConditionalOnWebApplication:当前项目是 Web 项 目的条件下

如何实现一个 Starter

光说不练假把式,现在就来撸一个 starter,实现自定义线程池

第一步,创建threadpool-spring-boot-starter工程

img

第二步,引入 Spring Boot 相关依赖

img

第三步,创建ThreadPoolAutoConfiguration

img

第四步,在threadpool-spring-boot-starter工程的 resources 包下创建META-INF/spring.factories文件

img

最后新建工程引入threadpool-spring-boot-starter

img

测试通过!!!